

ISA Simulation CPU

-24-bits

-I've created ISA Simulation program by using Javalanguage. Itis a

24-bit ISA. This ISA has “Opcode” 5 bits and provide “Operation code”
in 16 formats which maximum 2 operands which each operand has 3
bits. The last is the number in format of binary which this project
supports 16 binary numbers.

Registers

» Reqister:

» rO ="000"
»r1 ="001"
» r2 ="010"
»r3="011"
» r4 ="100"
»r5="101"
»ré6="110"
»>r/7="111

Binary of Opcode

» Register Immediate
» Mov “00000" “00001"

» Add “00010" “00011"™

» Sub “00100" *“00101™"
» Mul “00110” “00T11"
» Div “01000" *01001"
» ENd 00

Clock Cycles of opcode

ClockCycles:

» Mov = |
» Add =2
» Sub =3
» Mul =4
» Div=2>5

Mov and Add

Operand | and Operand

Mov r1 r4 smpv/hich moves the register r4 into register r1
Operand | and Value

Mov 12 25 ‘which moves the value 25 info register rl
Operand | and Operand

Addr] r4‘which adds the register r4 into register r1
Operand | and Value

Addr2 25 ‘ which adds the value 25 into register ri

>
>
>
>
>
>
>
>

Sub Div Mul

>
>
>
>
>
>
>
>
>
>
>
>

Operand | and Operand |l

Sub r1 r4 mpwhich subtract the register r4 into register r1
Operand | and Value

Sub r2 25 ==y which subtract the value 25 into register ri
Operand | and Operand Il

Div r1 r4=mpwhich divide the register r4 into reqisterr1
Operand | and Value

Div r2 25 ==mpnhich divide the value 25 into register ri
Operand | and Operand

Mul rl r4 sssp/nich multiply the register r4 into register r1
Operand | and Value

Mul r2 25 = \which multiply the value 25 into register r1

The program will start with suggestion. The user must input the input from in program. The input from
is Opcode spacebar Register spacebar

Register or Integer value, that is one line of one input order. You can input how much you want until
you press end 0 0 to stop

Step of input order affer execution

Steps of reqgisters:

This is the step of register:
For opcode “mul” it will display the result in form such as “rm:r_ (“_" will display

the targeted register) which will furn the result intfo 32-bit form rather than usual
16-bit.

“rm : r_ = 2 [32-bit binary result |”

For opcode “div" it will show the result of the division and it can hold the
remainder which will be stored in the register “re”.

“r_=72 [16-bit binary result] re: ¢ [16-bit binary remainder]”

CPI of the program:

Sample Code:

reg
registerValue reg f parseInt(val
registerValuel reg parseInt(val
registerValuelreg

val

registerValue reg parseInt(val

reg val

registerValuel reg registerValue reg parselInt(val

reg val

registerValuel reg registerValue reg parselnt(wval

val

registerValue parseInt(wval
registerValuel reg

