Food Critics Sentiment
Analysis using Neural

Network

Presented By: Utsaw Siwakoti Subject: Artificial Intelligence
ID: 6019449 Subject Code: SC6360
Presented To: Asst. Prof. Dr. Anilkumar K. G

Contents

- Introduction
- Current Scenario and Objectives

- Dataset and Architecture of the proposed
System

- Proposed System
- Glance at the System

- Conclusion

Introduction

- The system 1s about analyzing the sentiment of
food critics of a restaurant using Deep Learning
with Neural Network.

- The system uses TensorFlow library by Google
for machine learning.

Current Scenario and Objectives

- There are various people who give comments on the food and service
provided by a restaurant on their website. It would be very beneficial
for a restaurant to analyze these comments and enhance their food
service.

- But, it is very difficult to analyze these numerous sentiments in
person. Hence, the use of sentiment analysis using Neural Networks.

- The objectives of the proposed system are:

- To 1dentify the positive and negative feedback given by a customer on their
website and analyze them for future reference.

* Training the pre-existed dataset for Machine Learning.

- Analyzing test data with trained classifier using TensorFlow.
- Predicting a comment being positive or negative.

* Providing accuracy analysis.

Dataset and Architecture of the
proposed system

- The Dataset used in this system is provided by University of California,
Irvine Department of Computer Science.

- The dataset has 400 positive 400 negative food critics by their customers on
their website.

- The system is designed using Python Programming Language and uses
TensorFlow library for Deep Learning with Neural Network.

- There are various keywords in the sentences which needs to be processed.
Natural Language Processing is done by using Rapid Automatic Keyword
Extraction (RAKE) algorithm in Python Programming.

Proposed System

- At first the system loads the train dataset, test dataset
and uses RAKE algorithm to grab unique words to train
for Machine Learning.

- The Network i1s then generated using tflearn library and
then saved as a classifier model.

- After that, a test dataset is provided which 1s confronted
against the saved “classifier model”’to finally execute the
prediction of the sentiment.

- The Evaluation Result, precision, recall and accuracy are
executed as output of the system.

Glance at the System

Training the Dataset

| = L s shactivate. psl
[wenw) = python fc.py
hdf5 1 pported on this machine (please install/reinstall hSpy for optimal experience)
curses is not supported on this machine (please ins ta]] freinstall curses for an optimal experience)

=
p/tflearn_lo

Training sam 0

WValidation ~amp1&~ 00

Training Step: time: 1.000=

| Adam | epoch:

+[A+~[ATraining 5 3 & =+~ [

| Adam | epoch 0.62383 - acc: .El -— iter: 128/800
+[A+~[ATraining & 3 | total loss: «~[1m-[32m0.&8084- [Om- [Om | time: 1.016s
I_Ajgm | epoch: los=s: 0.63084 - acc Q 4832 -- 1tgr' ;HL "B00

= python fc.py
machine (please install/reinstall h5py for optimal experience)
ot ~uppnrted on this machine (please install/reinst: es Tor an optimal experience)
f supported!

Evaluation result: [0.80500000000000005]
probability of comment being negative: 0.5983052849769592
probability of comment being positive: 0.4917358160015921
probability of comment being negative: 0.5983052849769592

Conclusion

- The evaluation result of the system 1s around 80%, which means the
results are pretty accurate.

- Using Deep Learning with Neural Network to train and analyze
datasets can be very helpful to enhance business strategies and
marketing techniques.

ppendix

line 178
text line.strip().split(",")}[1]
text "text":
words = text.split(" ")
inner_data = []
_ future__ division word words:
_ future print_function inner_data.append(word)
_ future__ absolute_import sentences.append(inner_data)
sentence sentences:
basess inner_vector = []
numpy np word unique_words:
word sentence:
tflearn inner_vector.append(1)
tflearn.layers.core input_data, dropout, fully connected :
tflearn. layers.estimator regression inner_vector.append(e)
rake_nltk Rake vectors.append(inner_vector)
0s
os.environ['TF_CPP_MIN_LOG_LEVEL'] - '2° np.array(vectors, dtype-np.float3z)

def Cl&ai_f‘atﬁiﬂ T train_file path = 'fc-clean.csv'
f = open('fo.txt’, 'r') test_file_path - 'fc-clean-test.csv’
sentence
line in f: tflearn.data_utils load_csv
- - . e e an B . . i e eraan data, labels load_csv(train_file_path, torg
data = line.strip(}.replace(",","").replace('.", 1Y, ").split(';5;") 4 load i, 5
centence data[1]+', *-data[e].replace(’;’, *°).10 . testdata, testlabels - load csv(test file path, to
open('fc-clean.csv', "w')

one . - e w' Tty
f.write(sentence) f = open(*fc-clean.csv', 'r")

sentences
line f:
- iguewords (File path): text = line.strip().split(",")[1]
ﬁ;iatgﬂﬁas"dﬁ]{ B sentences - sentences-text:® °
f - open(file_path, "r"}) .
line 173 lake(La english"}
o . o 3
text = line.strip().split(’,')[1] _keywords_from_text(sentences)
Teut Tt uniguewords = r.get_ranked_phrases()
words = text.split(' °))
word words: words = uniquewords
word uniquewords:)
uniquewords.append(word) uniquewords [1
uniguewords word words:
each_word = word.split(" ")

w each_word:
preprocess(file_path, unigque_words): unigquewords.append(w)
sentences [1
vectors [1
f - open(file_path, 'r" uniquewords = uniquewords[:288]

data - preprocess(train_file_path, uniquewords)
testdata = preprocess(test_file path, uniquewords)

neurons - len{data[a])

tflearn.data_utils shuffle
data, labels - shuffle(data, labels)

network
network
network
network
network

input_data(shape=[None, neurons])
fully connected(network, 32 t
fully_connected(network, 32%2
fully connected(network, 32
dropout(network, @.5)

network
network

fully connected(network, 2, L
regression(network, optimizer Learning_rate-8.81, Loss

model = tflearn.DHN(network)

model. load("fc-classifier.tf1")
result - model.evaluate(testdata, testlabels)
print("Evaluation result: %s" Zresult)

label - model.predict label(testdata)
prediction = model.predict(testdata)

range (@, len(testlabels)):
testlabels[i][&]

label[i][2] 1:
tp 1
print (“probability

of comment being positive: Xs

fp 1
print (“"probability

of comment being positive: Xs

‘categorical_crossentropy')

(float(prediction[i][2])))

(fleat(prediction[i][1]}))

label[i][&] a:
tn 1
print ("probability comment bein ve: 5" E(flogt{prediction[i][=]1)})

n i
print J'pr:tati]ity comment being ve: Xs" Eflogt{prediction[i][1])}})}

precision
recall
accuracy

print ("precision= %=" Zprecision)
print {("recall=s ¥z Zrecall)
print ("accuracy= Xs acCuracy)

Thank You.

