

Lecture 05 Assignments
1. What is a semaphore? Complete the semaphore solution of the bounded buffer producer-consumer problem by filling the blanks of the given producer and consumer structures:
		A bounded buffer with n locations;
		Semaphore mutex initialized to the value 1;
		Semaphore full initialized to the value 0;
		Semaphore empty initialized to the value n;

		Producer process
	do {	produce an Item;
		1.1 ------------------------------------
		1.2 ------------------------------------
		 	add item to the buffer; //Critical Section
		1.3 ------------------------------------
		 signal (full); // signal to consumer that the buffer is full
	} while (TRUE);
Consumer process
	do {
 		1.4 ------------------------------------
		1.5 ------------------------------------
		 	remove an item from the buffer; //Critical Section
		 	signal (mutex); // signal to producer that the mutex is free
		1.6 ------------------------------------
		} while (TRUE);

2). Complete the semaphore solution of Readers priority situation of Readers-Writers synchronization problem by filling the blanks of the structure of the Readers process based on the following data:
		i. Dataset
 		ii. Semaphore rw_mutex initialized to 1
 		iii. Semaphore mutex initialized to 1
		iv. Integer read_count initialized to 0
	Readers process
	do {	
		//first finding readers using mutex
	2.1 -----------------------------
		read_count++; // find readers
		if (read_count == 1) //if at least one reader
		wait(rw_mutex); // then a writer should wait
 2.2 -----------------------------
		/* reading is performed */
	2.3 -----------------------------
 read count--; // reading by readers
		if (read_count == 0) // if no more readers
	2.4 -----------------------------
		signal(mutex); // signal ‘mutex’ to synchronized writers
	} while (TRUE);
3. What are two differences between user-level threads and kernel-level threads? Under what circumstances is one type better than the other?
4. How do the user-level threads recognized by an OS for their execution?
5. [bookmark: _GoBack]How would the user-level threads, which are generated by a compiler recognized by an OS for their execution (hint: you need to describe the three various user- level to kernel-level threads mapping schemes)?

6). What is a Critical Section (CS)? How would the semaphore solve the issue(s) of the CS in a process synchronization problem?
7). How do the user-level threads recognized by an OS for their execution? Describe the importance of Light Weight Processes (LWPs) at this scenario.
8). What are the two models of InterProcess Communication (IPC)? What are the strengths and weaknesses of the two approaches?
9). Identify the nature of the process structure including its IPC model which is shown below:
while (true)
 {
	 if (counter == BUFFER_SIZE)
		 /* do nothing */
	 Buffer[i] = next_item;
	 in = (in + 1) % BUFFER_SIZE; 	
 counter++; 	}
10). Briefly describe the issue of race condition in a process synchronization problem.
11). What is the meaning of the term busy waiting? What other kinds of waiting are there in an operating system? Can busy waiting be avoided altogether? Explain your answer.

12). Show that, if the wait() and signal() semaphore operations are not executed atomically, then mutual exclusion may be violated.

13). Illustrate how a binary semaphore can be used to implement mutual exclusion among n processes.

14). The implementation of mutex locks suffers from busy waiting. Describe what changes would be necessary so that a process waiting to acquire a mutex lock would be blocked and placed into a waiting queue until the lock became available.

3

