
Distributed Cloud Computing and
Parallel Processing -Part 1

Reference: Distributed and Cloud Computing From
Parallel Processing to the Internet of Things, Kai Hwang

Geoffrey C. Fox, and Jack J. Dongarra, Morgan
Kaufmann © 2012 Elsevier, Inc. All rights reserved.

1

Scalable Computing Over the Internet

• Over the past 60 years, computing technology has
undergone a series of platform and environment
changes.

• This section assess evolutionary changes in machine
architecture, operating system platform, network
connectivity, and application workload.

• Instead of using a centralized computer to solve
computational problems, a parallel and distributed
computing system uses multiple computers to solve
large-scale problems over the Internet.

• Thus, distributed computing becomes data-intensive
and network-centric.

2

The Age of Internet Computing
• Billions of people use the Internet every day.

• As a result, supercomputer sites and large data centers
must provide high-performance computing services to
huge numbers of Internet users concurrently.

• Because of this high demand, the Linpack Benchmark
for high-performance computing (HPC) applications is
no longer optimal for measuring system performance.

• The emergence of computing clouds instead demands
high-throughput computing (HTC) systems built with
parallel and distributed computing technologies.

3

The Platform Evolution

• From 1970 to 1990, we saw widespread use of
personal computers built with VLSI microprocessors.

• From 1980 to 2000, massive numbers of portable
computers and pervasive devices appeared in both
wired and wireless applications.

• Since 1990, the use of both HPC and HTC systems
hidden in clusters, grids, or Internet clouds has
proliferated.

• These systems are employed by both consumers and
high-end web-scale computing and information
services.

4

The Platform Evolution

• The general computing trend is to leverage shared web
resources and massive amounts of data over the
Internet.

• Figure 1.1 illustrates the evolution of HPC and HTC
systems.

• On the HPC side, supercomputers (massively parallel
processors or MPPs) are gradually replaced by clusters
of cooperative computers out of a desire to share
computing resources.

• The cluster is often a collection of homogeneous
computing nodes that are physically connected in close
range to one another.

5

The Platform Evolution

6

The Platform Evolution

• On the HTC side, peer-to-peer (P2P) networks are
formed for distributed file sharing and content
delivery applications.

• A P2P system is built over many client machines.

– Peer machines are globally distributed in nature.

• P2P, cloud computing, and web service platforms are
more focused on HTC applications than on HPC
applications.

• Clustering and P2P technologies lead to the
development of computational grids or data grids.

7

High-Performance Computing
• For many years, HPC systems emphasize the raw speed

performance. The speed of HPC systems has increased from
Gflops in the early 1990s to now Pflops in 2010.
– This improvement was driven mainly by the demands from scientific,

engineering, and manufacturing communities.

– For example, the Top 500 most powerful computer systems in the world
are measured by floating-point speed in Linpack benchmark results.

• However, the number of supercomputer users is limited to less
than 10% of all computer users.

• Today, the majority of computer users are using desktop
computers or large servers when they conduct Internet searches
and market-driven computing tasks.

8

High-Throughput Computing
• The development of market-oriented high-end computing

systems is undergoing a strategic change from an HPC paradigm
to an HTC paradigm.

• This HTC paradigm pays more attention to high-flux computing.
The main application for high-flux computing is in Internet
searches and web services by millions or more users
simultaneously.
– The performance goal thus shifts to measure high throughput or the

number of tasks completed per unit of time.

• HTC technology needs to not only improve in terms of batch
processing speed, but also address the acute problems of cost,
energy savings, security, and reliability at many data and
enterprise computing centers.

9

Computing Paradigm Distinctions

• The high-technology community has argued for
many years about the precise definitions of
centralized computing, parallel computing,
distributed computing, and cloud computing.

• In general, distributed computing is the opposite of
centralized computing.

• The field of parallel computing overlaps with
distributed computing to a great extent, and cloud
computing overlaps with distributed, centralized,
and parallel computing.

10

Computing Paradigm Distinctions

• Centralized computing:

– This is a computing paradigm by which all computer
resources are centralized in one physical system.

– All resources (processors, memory, and storage) are fully
shared and tightly coupled within one integrated OS.

– Many data centers and supercomputers are centralized
systems, but they are used in parallel, distributed, and
cloud computing applications.

11

Computing Paradigm Distinctions

• Parallel computing:
– In parallel computing, all processors are either tightly

coupled with centralized shared memory or loosely
coupled with distributed memory.

– Some authors refer to this discipline as parallel processing.
– Inter-processor communication is accomplished through

shared memory or via message passing.
– A computer system capable of parallel computing is

commonly known as a parallel computer.
– Programs running in a parallel computer are called parallel

programs.
– The process of writing parallel programs is often referred

to as parallel programming.

12

Computing Paradigm Distinctions

• Distributed computing:
– This is a field of computer science/engineering that studies

distributed systems.

– A distributed system consists of multiple autonomous
computers, each having its own private memory,
communicating through a computer network.

– Information exchange in a distributed system is
accomplished through message passing.

– A computer program that runs in a distributed system is
known as a distributed program.

– The process of writing distributed programs is referred to
as distributed programming.

13

Computing Paradigm Distinctions
• Cloud computing:

– An internet cloud of resources can be either a centralized or
a distributed computing system.

– The cloud applies parallel or distributed computing, or both.

– Clouds can be built with physical or virtualized resources
over large data centers that are centralized or distributed.

– Some authors consider cloud computing to be a form of
utility computing or service computing.

14

Computing Paradigm Distinctions

• As an alternative to the preceding terms, some in the
high-tech community prefer the term concurrent
computing or concurrent programming.

• These terms typically refer to the union of parallel
computing and distributing computing, although
biased practitioners may interpret them differently.

• Ubiquitous computing refers to computing with
pervasive devices at any place and time using wired
or wireless communication.

15

Computing Paradigm Distinctions

• The Internet of Things (IoT) is a networked
connection of everyday objects including computers,
sensors, humans, etc.

• The IoT is supported by Internet clouds to achieve
ubiquitous computing with any object at any place
and time.

• Finally, the term Internet computing is even broader
and covers all computing paradigms over the
Internet.

16

Computing Paradigm Distinctions

• In the future, both HPC and HTC systems will demand
multicore or many-core processors that can handle
large numbers of computing threads per core.

• Both HPC and HTC systems emphasize parallelism and
distributed computing.

• Future HPC and HTC systems must be able to satisfy
this huge demand in computing power in terms of
throughput, efficiency, scalability, and reliability.

• The system efficiency is decided by speed,
programming, and energy factors (i.e., throughput per
watt of energy consumed).

17

Computing Paradigm Distinctions
• Meeting these goals requires to yield the following design

objectives:
– Efficiency measures the utilization rate of resources in an execution model

by exploiting massive parallelism in HPC. For HTC, efficiency is more closely
related to job throughput, data access, storage, and power efficiency.

– Dependability measures the reliability and self-management from the chip
to the system and application levels. The purpose is to provide high-
throughput service with Quality of Service (QoS) assurance, even under
failure conditions.

– Adaptation in the programming model measures the ability to support
billions of job requests over massive data sets and virtualized cloud
resources under various workload and service models.

– Flexibility in application deployment measures the ability of distributed
systems to run well in both HPC (science and engineering) and HTC
(business) applications.

18

Scalable Computing Trends and New
Paradigms

• Degrees of Parallelism (DoP):
– Fifty years ago, when hardware was bulky and expensive,

most computers were designed in a bit-serial fashion. In this
scenario, bit-level parallelism (BLP) converts bit-serial
processing to word-level processing gradually.

– Over the years, users graduated from 4-bit microprocessors to
8-, 16-, 32-, and 64-bit CPUs.

– This led us to the next wave of improvement, known as
instruction-level parallelism (ILP), in which the processor
executes multiple instructions simultaneously rather than
only one instruction at a time.

– For the past 30 years, we have practiced ILP through
pipelining, superscalar computing, VLIW (very long instruction
word) architectures, and multithreading.

19

Scalable Computing Trends and New
Paradigms

– ILP requires branch prediction, dynamic scheduling,
speculation, and compiler support to work efficiently.

– Data-level parallelism (DLP) was made popular through
SIMD (single instruction, multiple data) and vector
machines using vector or array types of instructions.

– DLP requires even more hardware support and compiler
assistance to work properly.

– Ever since the introduction of multicore processors and
chip multiprocessors (CMPs), we have been exploring
task-level parallelism (TLP).

20

Scalable Computing Trends and New
Paradigms

– A modern processor explores all of the aforementioned
parallelism types. In fact, BLP, ILP, and DLP are well
supported by advances in hardware and compilers.

– However, TLP is far from being very successful due to
difficulty in programming and compilation of code for
efficient execution on multicore CMPs.

– As we move from parallel processing to distributed
processing, we will see an increase in computing
granularity to job-level parallelism (JLP).

– It is fair to say that coarse-grain parallelism is built on top
of fine-grain parallelism.

21

The Trend toward Utility Computing

• Figure 1.2 identifies major computing paradigms to
facilitate the study of distributed systems and their
applications.

• These paradigms share some common characteristics. First,
they are all ubiquitous in daily life.

• Reliability and scalability are two major design objectives
in these computing models.

• Second, they are aimed at autonomic operations that can
be self-organized to support dynamic discovery.

• Finally, these paradigms are composable with QoS and SLAs
(service-level agreements).

• These paradigms and their attributes realize the computer
utility vision.

22

The Trend toward Utility Computing

23

Multicore CPUs and Multithreading
Technologies

• Consider the growth of component and network
technologies over the past 30 years.

• They are crucial to the development of HPC and HTC
systems.

• In Figure 1.4, processor speed is measured in millions
of instructions per second (MIPS) and network
bandwidth is measured in megabits per second
(Mbps) or gigabits per second (Gbps).

• The unit GE refers to 1 Gbps Ethernet bandwidth.

24

Multicore CPUs and Multithreading
Technologies

25

Multicore CPUs and Multithreading
Technologies

• Both multi-core CPU and many-core GPU processors can handle
multiple instruction threads at different magnitudes today.

• Figure 1.5 shows the architecture of a typical multicore processor.
• Each core is essentially a processor with its own private cache (L1

cache).
• Multiple cores are housed in the same chip with an L2 cache that is

shared by all cores.
• In the future, multiple CMPs could be built on the same CPU chip

with even the L3 cache on the chip.
• Multicore and multithreaded CPUs are equipped with many high-

end processors, including the Intel i7, Xeon, AMD Opteron, Sun
Niagara, IBM Power 6, and X cell processors.

• Each core could be also multithreaded. For example, the Niagara II
is built with eight cores with eight threads handled by each core.

26

Multicore CPUs and Multithreading
Technologies

27

Multicore CPU and Many-Core GPU
Architectures

• CPU has reached its limit in terms of exploiting
massive DLP due to the aforementioned memory
wall problem.

• This has triggered the development of many-core
GPUs with hundreds or more thin cores.

• Both IA-32 and IA-64 instruction set architectures are
built into commercial CPUs.

• Now, x-86 processors have been extended to serve
HPC and HTC systems in some high-end server
processors.

28

Multicore CPU and Many-Core GPU
Architectures

• Many RISC processors have been replaced with
multicore x-86 processors and many-core GPUs in the
Top 500 systems.

• This trend indicates that x-86 upgrades will dominate in
data centers and supercomputers.

• The GPU also has been applied in large clusters to build
supercomputers in MPPs.

• In the future, the processor industry is also keen to
develop asymmetric or heterogeneous chip
multiprocessors that can house both fat CPU cores and
thin GPU cores on the same chip.

29

Multithreading Technology
• Consider in Figure 1.6 the dispatch of five independent

threads of instructions to four pipelined data paths
(functional units) in each of the following five processor
categories, from left to right: a four-issue superscalar
processor, a fine-grain multithreaded processor, a coarse-
grain multithreaded processor, a two-core CMP, and a
simultaneous multithreaded (SMT) processor.

• The superscalar processor is single-threaded with four
functional units.

• Each of the three multithreaded processors is four-way
multithreaded over four functional data paths.

• In the dual-core processor, assume two processing cores,
each a single-threaded two-way superscalar processor.

30

Multithreading Technology

31

Multithreading Technology
• Instructions from different threads are distinguished by specific

shading patterns for instructions from five independent threads.

• Typical instruction scheduling patterns are shown here. Only
instructions from the same thread are executed in a superscalar
processor.

• Fine-grain multithreading switches the execution of instructions
from different threads per cycle.

• Course-grain multithreading executes many instructions from the
same thread for quite a few cycles before switching to another
thread. The multicore CMP executes instructions from different
threads completely.

• The SMT allows simultaneous scheduling of instructions from
different threads in the same cycle.

32

GPU Computing to Exa-scale and
Beyond

• A GPU is a graphics coprocessor or accelerator mounted on a
computer’s graphics card or video card.

• A GPU offloads the CPU from tedious graphics tasks in video
editing applications. The world’s first GPU, the GeForce 256, was
marketed by NVIDIA in 1999.

• These GPU chips can process a minimum of 10 million polygons
per second, and are used in nearly every computer on the market
today.

• Some GPU features were also integrated into certain CPUs.

• Traditional CPUs are structured with only a few cores. For
example, the Xeon X5670 CPU has six cores.

• However, a modern GPU chip can be built with hundreds of
processing cores.

33

GPU Computing to Exa-scale and
Beyond

• Unlike CPUs, GPUs have a throughput architecture
that exploits massive parallelism by executing many
concurrent threads;

– slowly, instead of executing a single long thread in a
conventional microprocessor very quickly.

• Lately, parallel GPUs or GPU clusters have been
garnering a lot of attention against the use of CPUs
with limited parallelism.

– General-purpose computing on GPUs, known as GPGPUs,
have appeared in the HPC field.

– NVIDIA’s CUDA model was for HPC using GPGPUs.

34

How GPUs Work?
• Early GPUs functioned as coprocessors attached to the CPU.

• Today, the NVIDIA GPU has been upgraded to 128 cores on a
single chip.
– Furthermore, each core on a GPU can handle eight threads of

instructions.

– This translates to having up to 1,024 threads executed concurrently on a
single GPU.

• This is true massive parallelism, compared to only a few threads
that can be handled by a conventional CPU.

• The CPU is optimized for latency caches, while the GPU is
optimized to deliver much higher throughput with explicit
management of on-chip memory.

35

How GPUs Work?
• Modern GPUs are not restricted to accelerated graphics or

video coding.
• They are used in HPC systems to power supercomputers with

massive parallelism at multicore and multithreading levels.
• GPUs are designed to handle large numbers of floating-point

operations in parallel.
– In a way, the GPU offloads the CPU from all data-intensive

calculations, not just those that are related to video processing.
– Conventional GPUs are widely used in mobile phones, game

consoles, embedded systems, PCs, and servers.

• The NVIDIA CUDA Tesla or Fermi is used in GPU clusters or in
HPC systems for parallel processing of massive floating-
pointing data.

36

GPU Programming Model
• Figure 1.7 shows the interaction between a CPU and GPU in

performing parallel execution of floating-point operations
concurrently.

• The CPU is the conventional multicore processor with limited
parallelism to exploit.

• The GPU has a many-core architecture that has hundreds of simple
processing cores organized as multiprocessors. Each core can have
one or more threads.

• Essentially, the CPU’s floating-point kernel computation role is largely
offloaded to the many-core GPU.

• The CPU instructs the GPU to perform massive data processing.
• The bandwidth must be matched between the on-board main

memory and the on-chip GPU memory.
– This process is carried out in NVIDIA’s CUDA programming using the

GeForce 8800 or Tesla and Fermi GPUs.

37

GPU Programming Model

38

System-Area Interconnects
• The nodes in small clusters are mostly interconnected by an

Ethernet switch or a local area network (LAN).
• As Figure 1.11 shows, a LAN typically is used to connect client

hosts to big servers.
• A storage area network (SAN) connects servers to network

storage such as disk arrays.
• Network attached storage (NAS) connects client hosts

directly to the disk arrays.
• All three types of networks often appear in a large cluster

built with commercial network components.
• If no large distributed storage is shared, a small cluster could

be built with a multiport Gigabit Ethernet switch plus copper
cables to link the end machines.
– All three types of networks are commercially available.

39

System-Area Interconnects

40

Virtual Machines and Virtualization
Middleware

• A conventional computer has a single OS image. This
offers a rigid architecture that tightly couples
application software to a specific hardware platform.

• Some software running well on one machine may not
be executable on another platform with a different
instruction set under a fixed OS.

• Virtual machines (VMs) offer novel solutions to
underutilized resources, application inflexibility,
software manageability, and security concerns in
existing physical machines.

41

Virtual Machines and Virtualization
Middleware

• Today, to build large clusters, grids, and clouds, we
need to access large amounts of computing, storage,
and networking resources in a virtualized manner.

• We need to aggregate those resources, and
hopefully, offer a single system image.

• In particular, a cloud of provisioned resources must
rely on virtualization of processors, memory, and I/O
facilities dynamically.

• Figure 1.12 illustrates the architectures of three VM
configurations.

42

Virtual Machines and Virtualization
Middleware

43

VM Primitive Operations
• The VMM provides the VM abstraction to the guest OS. With full

virtualization, the VMM exports a VM abstraction identical to the
physical machine so that a standard OS such as Windows 2000 or
Linux can run just as it would on the physical hardware.

• Low-level VMM operations are indicated by Mendel Rosenblum
[41] and illustrated in Figure 1.13.
– First, the VMs can be multiplexed between hardware machines, as shown in

Figure 1.13(a).

– Second, a VM can be suspended and stored in stable storage, as shown in
Figure 1.13(b).

– Third, a suspended VM can be resumed or provisioned to a new hardware
platform, as shown in Figure 1.13(c).

– Finally, a VM can be migrated from one hardware platform to another, as
shown in Figure 1.13(d).

44

VM Primitive Operations

45

VM Primitive Operations
• These VM operations enable a VM to be provisioned to any

available hardware platform.
• They also enable flexibility in porting distributed

application executions.
• Furthermore, the VM approach will significantly enhance

the utilization of server resources.
• Multiple server functions can be consolidated on the same

hardware platform to achieve higher system efficiency.
• This will eliminate server sprawl via deployment of systems

as VMs, which move transparency to the shared hardware.
• With this approach, VMware claimed that server utilization

could be increased from its current 5–15 percent to 60–80
percent.

46

System Models for Distributed and
Cloud Computing

• Distributed and cloud computing systems are built
over a large number of autonomous computer
nodes.
– These node machines are interconnected by SANs,

LANs, or WANs in a hierarchical manner.
– With today’s networking technology, a few LAN

switches can easily connect hundreds of machines as
a working cluster.

• A WAN can connect many local clusters to form a
very large cluster of clusters.

• In this sense, one can build a massive system with
millions of computers connected to edge networks.

47

System Models for Distributed and
Cloud Computing

• Massive systems are considered highly scalable, and
can reach web-scale connectivity, either physically or
logically.

• In Table 1.2, massive systems are classified into four
groups: clusters, P2P networks, computing grids, and
Internet clouds over huge data centers.

• In terms of node number, these four system classes
may involve hundreds, thousands, or even millions of
computers as participating nodes.

48

49

Cluster Architecture
• A computing cluster consists of interconnected stand-alone

computers which work cooperatively as a single integrated
computing resource.

• In the past, clustered computer systems have demonstrated
impressive results in handling heavy workloads with large data
sets.

• Figure 1.15 shows the architecture of a typical server cluster
built around a low-latency, high bandwidth interconnection
network.
– This network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g.,

Ethernet). To build a larger cluster with more nodes, the interconnection
network can be built with multiple levels of Gigabit Ethernet, Myrinet, or
InfiniBand switches.

50

Cluster Architecture
• Through hierarchical construction using a SAN, LAN, or WAN,

one can build scalable clusters with an increasing number of
nodes.

• The cluster is connected to the Internet via a virtual private
network (VPN) gateway.

• The gateway IP address locates the cluster.

• The system image of a computer is decided by the way the OS
manages the shared cluster resources.

• Most clusters have loosely coupled node computers.

• All resources of a server node are managed by their own OS.

• Thus, most clusters have multiple system images as a result of
having many autonomous nodes under different OS control.

51

Cluster Architecture

52

Peer-to-Peer Network Families
• An example of a well-established distributed system is

the client-server architecture.

• In this scenario, client machines (PCs and workstations)
are connected to a central server for compute, e-mail,
file access, and database applications.

• The P2P architecture offers a distributed model of
networked systems.

• First, a P2P network is client-oriented instead of
server-oriented.

• In this section, P2P systems are introduced at the
physical level and overlay networks at the logical level.

53

Peer-to-Peer Network Families
• In a P2P system, every node acts as both a client and a

server, providing part of the system resources.
– Peer machines are simply client computers connected to

the Internet.
– All client machines act autonomously to join or leave the

system freely.

• This implies that no master-slave relationship exists
among the peers.
– No central coordination or central database is needed.

• In other words, no peer machine has a global view of
the entire P2P system.
– The system is self-organizing with distributed control.

54

Peer-to-Peer Network Families
• Figure 1.17 shows the architecture of a P2P network at two

abstraction levels.
• Initially, the peers are totally unrelated.
• Each peer machine joins or leaves the P2P network

voluntarily.
• Only the participating peers form the physical network at any

time.
• Unlike the cluster or grid, a P2P network does not use a

dedicated interconnection network.
• The physical network is simply an ad hoc network formed at

various Internet domains randomly using the TCP/IP and NAI
protocols.
– Thus, the physical network varies in size and topology dynamically

due to the free membership in the P2P network.

55

Peer-to-Peer Network Families

56

Cloud Computing over the Internet
• Cloud computing has been defined differently by

many users and designers.

– For example, IBM, a major player in cloud computing, has
defined it as follows: “A cloud is a pool of virtualized
computer resources”.

• A cloud can host a variety of different workloads,
including batch-style backend jobs and interactive and
user-facing applications.”

– Based on this definition, a cloud allows workloads to be
deployed and scaled out quickly through rapid provisioning
of virtual or physical machines.

57

Cloud Computing over the Internet

• The cloud supports redundant, self-recovering,
highly scalable programming models that allow
workloads to recover from many unavoidable
hardware/software failures.

• Finally, the cloud system should be able to monitor
resource use in real time to enable rebalancing of
allocations when needed.

• Cloud computing applies a virtualized platform with
elastic resources on demand by provisioning
hardware, software, and data sets dynamically (see
Figure 1.18).

58

Internet Clouds
• The idea is to move desktop computing to a service-oriented

platform using server clusters and huge databases at data
centers.
– Cloud computing leverages its low cost and simplicity to benefit both

users and providers.

• Machine virtualization has enabled such cost-effectiveness.
Cloud computing intends to satisfy many user applications
simultaneously. The cloud ecosystem must be designed to be
secure, trustworthy, and dependable.
– Some computer users think of the cloud as a centralized resource

pool.

– Others consider the cloud to be a server cluster which practices
distributed computing over all the servers used.

59

Internet Clouds

60

The Cloud Landscape
• Traditionally, a distributed computing system tends to

be owned and operated by an autonomous
administrative domain (e.g., a research laboratory or
company) for on-premises computing needs.

• However, these traditional systems have encountered
several performance bottlenecks:
– constant system maintenance, poor utilization, and

increasing costs associated with hardware/software
upgrades.

• Cloud computing as an on-demand computing
paradigm resolves or relieves us from these problems.

• Figure 1.19 depicts the cloud landscape and major
cloud players, based on three cloud service models.

61

The Cloud Landscape

62

The Cloud Landscape

• Infrastructure as a Service (IaaS):

– This model puts together infrastructures demanded by
users—namely servers, storage, networks, and the data
center fabric.

– The user can deploy and run on multiple VMs running
guest OSs on specific applications.

– The user does not manage or control the underlying cloud
infrastructure, but can specify when to request and release
the needed resources.

63

The Cloud Landscape
• Platform as a Service (PaaS)

– This model enables the user to deploy user-built
applications onto a virtualized cloud platform.

– PaaS includes middleware, databases, development tools,
and some runtime support such as Web 2.0 and Java.

– The platform includes both hardware and software
integrated with specific programming interfaces.

– The provider supplies the API and software tools (e.g.,
Java, Python, Web 2.0, .NET).

– The user is freed from managing the cloud infrastructure.

64

The Cloud Landscape
• Software as a Service (SaaS):

– This refers to browser-initiated application software over
thousands of paid cloud customers.

– The SaaS model applies to business processes, industry
applications, consumer relationship management (CRM),
enterprise resources planning (ERP), human resources
(HR), and collaborative applications.

– On the customer side, there is no upfront investment in
servers or software licensing.

– On the provider side, costs are rather low, compared with
conventional hosting of user applications.

65

The Cloud Landscape
• Internet clouds offer four deployment modes:

private, public, managed, and hybrid.

• These modes demand different levels of security
implications.

– The different SLAs imply that the security responsibility is
shared among all the cloud providers, the cloud resource
consumers, and the third party cloud-enabled software
providers.

• Advantages of cloud computing have been advocated
by many IT experts, industry leaders, and computer
science researchers.

66

The Cloud Landscape
• The following list highlights eight reasons to adapt the cloud

for upgraded Internet applications and web services:
1. Desired location in areas with protected space and higher energy

efficiency.
2. Sharing of peak-load capacity among a large pool of users,

improving overall utilization.
3. Separation of infrastructure maintenance duties from domain-

specific application development.
4. Significant reduction in cloud computing cost, compared with

traditional computing paradigms.
5. Cloud computing programming and application development.
6. Service and data discovery and content/service distribution.
7. Privacy, security, copyright, and reliability issues.
8. Service agreements, business models, and pricing policies.

67

Software Environments for Distributed
Systems and Clouds

• This section introduces popular software environments
for using distributed and cloud computing systems:

– Service-Oriented Architecture (SOA)

– Layered Architecture for Web Services and Grids

– Web Services and Tools

– The Evolution of SOA

– Grids versus Clouds

68

Service-Oriented Architecture (SOA)

• In grids/web services, Java, and CORBA, an entity is,
respectively, a service, a Java object, and a CORBA
distributed object in a variety of languages.

• These architectures build on the traditional seven Open
Systems Interconnection (OSI) layers that provide the
base networking abstractions.

• On top of this we have a base software environment,
which would be .NET or Apache Axis for web services,
the Java Virtual Machine for Java, and a broker network
for CORBA.

• On top of this base environment one would build a
higher level environment of the distributed computing
environment.

69

Service-Oriented Architecture (SOA)
• SOA starts with entity interfaces and inter-entity communication,

which rebuild the top four OSI layers but at the entity and not the
bit level. Figure 1.20 shows the layered architecture for
distributed entities used in web services and grid systems.

70

Layered Architecture for Web Services
and Grids

• The entity interfaces correspond to the Web Services Description
Language (WSDL), Java method, and CORBA interface definition
language (IDL) specifications in these example distributed
systems.
– These interfaces are linked with customized, high-level communication

systems: SOAP, RMI, and IIOP in the three examples.

• These communication systems support features including
particular message patterns such as Remote Procedure Call or
RPC, fault recovery, and specialized routing.

• Often, these communication systems are built on message-
oriented middleware infrastructure such as Web-Sphere MQ or
Java Message Service (JMS).

71

Layered Architecture for Web Services
and Grids

• In the case of fault tolerance, the features in the
Web Services Reliable Messaging (WSRM)
framework mimic the OSI layer capability (as in TCP
fault tolerance) modified to match the different
abstractions (such as messages versus packets,
virtualized addressing) at the entity levels.

• Security is a critical capability that either uses or re-
implements the capabilities seen in concepts such as
Internet Protocol Security (IPsec) and secure sockets
in the OSI layers.

72

Web Services and Tools
• Loose coupling and support of heterogeneous

implementations make Web services more attractive
than distributed objects.

• Figure 1.20 corresponds to two choices of service
architecture: web services or REST systems.

• Both web services and REST systems have very distinct
approaches to building reliable interoperable systems.

• In web services, one aims to fully specify all aspects of
the service and its environment.

• This specification is carried with communicated
messages using Simple Object Access Protocol (SOAP).

73

Web Services and Tools
• The hosting environment then becomes a universal

distributed operating system with fully distributed
capability carried by SOAP messages.

– This approach has mixed success as it has been hard to
agree on key parts of the protocol and even harder to
efficiently implement the protocol by software such as
Apache Axis.

• In the REST approach, one adopts simplicity as the
universal principle and delegates most of the
difficult problems to application (implementation-
specific) software.

74

Web Services and Tools
• In a web services language, REST has minimal

information in the header, and the message body (that
is opaque to generic message processing) carries all the
needed information.
– REST architectures are clearly more appropriate for rapid

technology environments.

• However, the ideas in web services are important and
probably will be required in mature systems at a
different level in the stack (as part of the application).
– Note that REST can use XML schemas but not those that

are part of SOAP; “XML over HTTP” is a popular design
choice in this regard.

75

The Evolution of SOA
• As shown in Figure 1.21, service-oriented

architecture (SOA) has evolved over the years.

– SOA applies to building grids, clouds, grids of clouds,
clouds of grids, clouds of clouds (also known as
interclouds), and systems of systems in general.

• A large number of sensors provide data-collection
services, denoted in the figure as SS (sensor
service).

– A sensor can be a ZigBee device, a Bluetooth device, a
WiFi access point, a personal computer, a GPA, or a
wireless phone, among other things.

76

The Evolution of SOA

• Raw data is collected by sensor services.

– All the SS devices interact with large or small
computers, many forms of grids, databases, the
compute cloud, the storage cloud, the filter cloud, the
discovery cloud, and so on.

• Filter services (fs in the figure 1.21) are used to
eliminate unwanted raw data, in order to respond
to specific requests from the web, the grid, or
web services.

77

The Evolution of SOA

78

Grids versus Clouds
• The boundary between grids and clouds are getting blurred in recent

years.
• For web services, workflow technologies are used to coordinate or

orchestrate services with certain specifications used to define critical
business process models such as two-phase transactions.

• In general, a grid system applies static resources, while a cloud
emphasizes elastic resources.

• For some researchers, the differences between grids and clouds are
limited only in dynamic resource allocation based on virtualization and
autonomic computing.

• One can build a grid out of multiple clouds.
• This type of grid can do a better job than a pure cloud, because it can

explicitly support negotiated resource allocation.
• Thus one may end up building with a system of systems: such as a

cloud of clouds, a grid of clouds, or a cloud of grids, or inter-clouds as
a basic SOA architecture.

79

Trends toward Distributed Operating
Systems

• The computers in most distributed systems are loosely
coupled.
– This is mainly due to the fact that all node machines run with an

independent operating system.

• To promote resource sharing and fast communication among
node machines, it is best to have a distributed OS that
manages all resources coherently and efficiently.

• Such a system is most likely to be a closed system, and it will
likely rely on message passing and RPCs for internode
communications.
– It should be pointed out that a distributed OS is crucial for upgrading

the performance, efficiency, and flexibility of distributed applications.

80

Features of 3 distributed OS

81

Parallel and Distributed Programming
Models

• In this section, we will explore four programming
models for distributed computing with expected
scalable performance and application flexibility.

• Table 1.7 summarizes three of these models, along
with some software tool sets developed in recent
years.

82

Parallel and Distributed Programming
Models

83

Message-Passing Interface (MPI)

• This is the primary programming standard used to
develop parallel and concurrent programs to run on a
distributed system.
– MPI is essentially a library of subprograms that can be

called from C or FORTRAN to write parallel programs
running on a distributed system.

• The idea is to embody clusters, grid systems, and P2P
systems with upgraded web services and utility
computing applications.
– Besides MPI, distributed programming can be also

supported with low-level primitives such as the Parallel
Virtual Machine (PVM).

– Both MPI and PVM are described in Hwang and Xu.

84

MapReduce
• MapReduce is a web programming model for

scalable data processing on large clusters over large
data sets.

– The model is applied mainly in web-scale search and
cloud computing applications.

• The user specifies a Map function to generate a set
of intermediate key/value pairs.

• Then the user applies a Reduce function to merge
all intermediate values with the same intermediate
key.

85

MapReduce

• MapReduce is highly scalable to explore high
degrees of parallelism at different job levels.

• A typical MapReduce computation process can
handle terabytes of data on tens of thousands or
more client machines:

– Hundreds of MapReduce programs can be executed
simultaneously; in fact, thousands of MapReduce jobs are
executed on Google’s clusters every day.

86

Hadoop Library
• Hadoop offers a software platform that was originally

developed by a Yahoo! group.
• The package enables users to write and run applications over

vast amounts of distributed data.
• Users can easily scale Hadoop to store and process petabytes

of data in the web space.
– Also, Hadoop is economical in that it comes with an open source

version of MapReduce that minimizes overhead in task spawning
and massive data communication.

• It is efficient, as it processes data with a high degree of
parallelism across a large number of commodity nodes, and it
is reliable in that it automatically keeps multiple data copies
to facilitate redeployment of computing tasks upon
unexpected system failures.

87

