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Scalable Computing Over the Internet 

• Over the past 60 years, computing technology has 
undergone a series of platform and environment 
changes.  

• This section assess evolutionary changes in machine 
architecture, operating system platform, network 
connectivity, and application workload.  

• Instead of using a centralized computer to solve 
computational problems, a parallel and distributed 
computing system uses multiple computers to solve 
large-scale problems over the Internet.  

• Thus, distributed computing becomes data-intensive 
and network-centric. 
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The Age of Internet Computing 
• Billions of people use the Internet every day.  

• As a result, supercomputer sites and large data centers 
must provide high-performance computing services to 
huge numbers of Internet users concurrently. 

• Because of this high demand, the Linpack Benchmark 
for high-performance computing (HPC) applications is 
no longer optimal for measuring system performance.  

• The emergence of computing clouds instead demands 
high-throughput computing (HTC) systems built with 
parallel and distributed computing technologies. 
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The Platform Evolution 

• From 1970 to 1990, we saw widespread use of 
personal computers built with VLSI microprocessors. 

• From 1980 to 2000, massive numbers of portable 
computers and pervasive devices appeared in both 
wired and wireless applications.  

• Since 1990, the use of both HPC and HTC systems 
hidden in clusters, grids, or Internet clouds has 
proliferated.  

• These systems are employed by both consumers and 
high-end web-scale computing and information 
services. 
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The Platform Evolution 

• The general computing trend is to leverage shared web 
resources and massive amounts of data over the 
Internet.  

• Figure 1.1 illustrates the evolution of HPC and HTC 
systems.  

• On the HPC side, supercomputers (massively parallel 
processors or MPPs) are gradually replaced by clusters 
of cooperative computers out of a desire to share 
computing resources.  

• The cluster is often a collection of homogeneous 
computing nodes that are physically connected in close 
range to one another. 
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The Platform Evolution 
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The Platform Evolution 

• On the HTC side, peer-to-peer (P2P) networks are 
formed for distributed file sharing and content 
delivery applications.  

• A P2P system is built over many client machines.  

– Peer machines are globally distributed in nature.  

• P2P, cloud computing, and web service platforms are 
more focused on HTC applications than on HPC 
applications. 

• Clustering and P2P technologies lead to the 
development of computational grids or data grids. 
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High-Performance Computing 
• For many years, HPC systems emphasize the raw speed 

performance.  The speed of HPC systems has increased from 
Gflops in the early 1990s to now Pflops in 2010.  
– This improvement was driven mainly by the demands from scientific, 

engineering, and manufacturing communities.  

– For example, the Top 500 most powerful computer systems in the world 
are measured by floating-point speed in Linpack benchmark results.  

• However, the number of supercomputer users is limited to less 
than  10% of all computer users.  

• Today, the majority of computer users are using desktop 
computers or large servers when they conduct Internet searches 
and market-driven computing tasks. 
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High-Throughput Computing 
• The development of market-oriented high-end computing 

systems is undergoing a strategic change from an HPC paradigm 
to an HTC paradigm.  

• This HTC paradigm pays more attention to high-flux computing. 
The main application for high-flux computing is in Internet 
searches and web services by millions or more users 
simultaneously. 
– The performance goal thus shifts to measure high throughput or the 

number of tasks completed per unit of time. 

• HTC technology needs to not only improve in terms of batch 
processing speed, but also address the acute problems of cost, 
energy savings, security, and reliability at many data and 
enterprise computing centers. 
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Computing Paradigm Distinctions 

• The high-technology community has argued for 
many years about the precise definitions of 
centralized computing, parallel computing, 
distributed computing, and cloud computing.  

• In general, distributed computing is the opposite of 
centralized computing.  

• The field of parallel computing overlaps with 
distributed computing to a great extent, and cloud 
computing overlaps with distributed, centralized, 
and parallel computing. 
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Computing Paradigm Distinctions 

• Centralized computing:  

– This is a computing paradigm by which all computer 
resources are centralized in one physical system.  

– All resources (processors, memory, and storage) are fully 
shared and tightly coupled within one integrated OS.  

– Many data centers and supercomputers are centralized 
systems, but they are used in parallel, distributed, and 
cloud computing applications. 
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Computing Paradigm Distinctions 

• Parallel computing:   
– In parallel computing, all processors are either tightly 

coupled with centralized shared memory or loosely 
coupled with distributed memory.  

– Some authors refer to this discipline as parallel processing.  
– Inter-processor communication is accomplished through 

shared memory or via message passing.  
– A computer system capable of parallel computing is 

commonly known as a parallel computer.  
– Programs running in a parallel computer are called parallel 

programs.  
– The process of writing parallel programs is often referred 

to as parallel programming. 

12 



Computing Paradigm Distinctions 

• Distributed computing: 
– This is a field of computer science/engineering that studies 

distributed systems.  

– A distributed system  consists of multiple autonomous 
computers, each having its own private memory, 
communicating through a computer network.  

– Information exchange in a distributed system is 
accomplished through message passing.  

– A computer program that runs in a distributed system is 
known as a distributed program.  

– The process of writing distributed programs is referred to 
as distributed programming. 
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Computing Paradigm Distinctions 
• Cloud computing: 

–  An internet cloud of resources can be either a centralized or 
a distributed computing system.  

– The cloud applies parallel or distributed computing, or both.  

– Clouds can be built with physical or virtualized resources 
over large data centers that are centralized or distributed.  

– Some authors consider cloud computing to be a form of 
utility computing or service computing. 
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Computing Paradigm Distinctions 

• As an alternative to the preceding terms, some in the 
high-tech community prefer the term concurrent 
computing or concurrent programming.  

• These terms typically refer to the union of parallel 
computing and distributing computing, although 
biased practitioners may interpret them differently. 

• Ubiquitous computing refers to computing with 
pervasive devices at any place and time using wired 
or wireless communication. 
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Computing Paradigm Distinctions 

• The Internet of Things (IoT) is a networked 
connection of everyday objects including computers, 
sensors, humans, etc.  

• The IoT is supported by Internet clouds to achieve 
ubiquitous computing with any object at any place 
and time.  

• Finally, the term Internet computing is even broader 
and covers all computing paradigms over the 
Internet.  
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Computing Paradigm Distinctions 

• In the future, both HPC and HTC systems will demand 
multicore or many-core processors that can handle 
large numbers of computing threads per core.  

• Both HPC and HTC systems emphasize parallelism and 
distributed computing.  

• Future HPC and HTC systems must be able to satisfy 
this huge demand in computing power in terms of 
throughput, efficiency, scalability, and reliability.  

• The system efficiency is decided by speed, 
programming, and energy factors (i.e., throughput per 
watt of energy consumed). 
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Computing Paradigm Distinctions 
• Meeting these goals requires to yield the following design 

objectives: 
– Efficiency measures the utilization rate of resources in an execution model 

by exploiting massive parallelism in HPC. For HTC, efficiency is more closely 
related to job throughput, data access, storage, and power efficiency.  

– Dependability measures the reliability and self-management from the chip 
to the system and application levels. The purpose is to provide high-
throughput service with Quality of Service (QoS) assurance, even under 
failure conditions. 

– Adaptation in the programming model measures the ability to support 
billions of job requests over massive data sets and virtualized cloud 
resources under various workload and service models. 

– Flexibility in application deployment measures the ability of distributed 
systems to run well in both HPC (science and engineering) and HTC 
(business) applications. 
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Scalable Computing Trends and New 
Paradigms 

• Degrees of Parallelism (DoP): 
– Fifty years ago, when hardware was bulky and expensive, 

most computers were designed in a bit-serial fashion. In this 
scenario, bit-level parallelism (BLP) converts bit-serial 
processing to word-level processing gradually.  

– Over the years, users graduated from 4-bit microprocessors to 
8-, 16-, 32-, and 64-bit CPUs.  

– This led us to the next wave of improvement, known as 
instruction-level parallelism (ILP), in which the processor 
executes multiple instructions simultaneously rather than 
only one instruction at a time.  

– For the past 30 years, we have practiced ILP through 
pipelining, superscalar computing, VLIW (very long instruction 
word) architectures, and multithreading. 
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Scalable Computing Trends and New 
Paradigms 

– ILP requires branch prediction, dynamic scheduling, 
speculation, and compiler support to work efficiently. 

– Data-level parallelism (DLP) was made popular through 
SIMD (single instruction, multiple data) and vector 
machines using vector or array types of instructions.  

– DLP requires even more hardware support and compiler 
assistance to work properly.  

– Ever since the introduction of multicore processors and 
chip multiprocessors (CMPs), we have been exploring 
task-level parallelism (TLP). 
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Scalable Computing Trends and New 
Paradigms 

– A modern processor explores all of the aforementioned 
parallelism types. In fact, BLP, ILP, and DLP are well 
supported by advances in hardware and compilers. 

– However, TLP is far from being very successful due to 
difficulty in programming and compilation of code for 
efficient execution on multicore CMPs.  

– As we move from parallel processing to distributed 
processing, we will see an increase in computing 
granularity to job-level parallelism (JLP).  

– It is fair to say that coarse-grain parallelism is built on top 
of fine-grain parallelism. 
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The Trend toward Utility Computing 

• Figure 1.2 identifies major computing paradigms to 
facilitate the study of distributed systems and their 
applications.  

• These paradigms share some common characteristics. First, 
they are all ubiquitous in daily life.  

• Reliability and scalability are two major design objectives 
in these computing models. 

• Second, they are aimed at autonomic operations that can 
be self-organized to support dynamic discovery. 

• Finally, these paradigms are composable with QoS and SLAs 
(service-level agreements). 

• These paradigms and their attributes realize the computer 
utility vision. 
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The Trend toward Utility Computing 
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Multicore CPUs and Multithreading 
Technologies 

• Consider the growth of component and network 
technologies over the past 30 years.  

• They are crucial to the development of HPC and HTC 
systems.  

• In Figure 1.4, processor speed is measured in millions 
of instructions per second (MIPS) and network 
bandwidth is measured in megabits per second 
(Mbps) or gigabits per second (Gbps).  

• The unit GE refers to 1 Gbps Ethernet bandwidth. 
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Multicore CPUs and Multithreading 
Technologies 
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Multicore CPUs and Multithreading 
Technologies 

• Both multi-core CPU and many-core GPU processors can handle 
multiple instruction threads at different magnitudes today.  

• Figure 1.5 shows the architecture of a typical multicore processor. 
• Each core is essentially a processor with its own private cache (L1 

cache).  
• Multiple cores are housed in the same chip with an L2 cache that is 

shared by all cores.  
• In the future, multiple CMPs could be built on the same CPU chip 

with even the L3 cache on the chip.  
• Multicore and multithreaded CPUs are equipped with many high-

end processors, including the Intel i7, Xeon, AMD  Opteron, Sun 
Niagara, IBM Power 6, and X cell processors.  

• Each core could be also multithreaded.  For example, the Niagara II 
is built with eight cores with eight threads handled by each core.  
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Multicore CPUs and Multithreading 
Technologies 
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Multicore CPU and Many-Core GPU 
Architectures 

• CPU has reached its limit in terms of exploiting 
massive DLP due to the aforementioned memory 
wall problem.  

• This has triggered the development of many-core 
GPUs with hundreds or more thin cores.  

• Both IA-32 and IA-64 instruction set architectures are 
built into commercial CPUs.  

• Now, x-86 processors have been extended to serve 
HPC and HTC systems in some high-end server 
processors. 
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Multicore CPU and Many-Core GPU 
Architectures 

• Many RISC processors have been replaced with 
multicore x-86 processors and many-core GPUs in the 
Top 500 systems.  

• This trend indicates that x-86 upgrades will dominate in 
data centers and supercomputers.  

• The GPU also has been applied in large clusters to build 
supercomputers in MPPs. 

• In the future, the processor industry is also keen to 
develop asymmetric or heterogeneous chip 
multiprocessors that can house both fat CPU cores and 
thin GPU cores on the same chip. 
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Multithreading Technology 
• Consider in Figure 1.6 the dispatch of five independent 

threads of instructions to four pipelined data paths 
(functional units) in each of the following five processor 
categories, from left to right: a four-issue superscalar 
processor, a fine-grain multithreaded processor, a coarse-
grain multithreaded processor, a two-core CMP, and a 
simultaneous multithreaded (SMT) processor.  

• The superscalar processor is single-threaded with four 
functional units.  

• Each of the three multithreaded processors is four-way 
multithreaded over four functional data paths.  

• In the dual-core processor, assume two processing cores, 
each a single-threaded two-way superscalar processor. 
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Multithreading Technology 
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Multithreading Technology 
• Instructions from different threads are distinguished by specific 

shading patterns for instructions from five independent threads.  

• Typical instruction scheduling patterns are shown here. Only 
instructions from the same thread are executed in a superscalar 
processor.  

• Fine-grain multithreading switches the execution of instructions 
from different threads per cycle.  

• Course-grain multithreading executes many instructions from the 
same thread for quite a few cycles before switching to another 
thread. The multicore CMP executes instructions from different 
threads completely. 

• The SMT allows simultaneous scheduling of instructions from 
different threads in the same cycle.  
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GPU Computing to Exa-scale and 
Beyond 

• A GPU is a graphics coprocessor or accelerator mounted on a 
computer’s graphics card or video card.  

• A GPU offloads the CPU from tedious graphics tasks in video 
editing applications.  The world’s first GPU, the GeForce 256, was 
marketed by NVIDIA in 1999.  

• These GPU chips can process a minimum of 10 million polygons 
per second, and are used in nearly every computer on the market 
today.  

• Some GPU features were also integrated into certain CPUs.  

• Traditional CPUs are structured with only a few cores. For 
example, the Xeon X5670 CPU has six cores.  

• However, a modern GPU chip can be built with hundreds of 
processing cores. 
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GPU Computing to Exa-scale and 
Beyond 

• Unlike CPUs, GPUs have a throughput architecture 
that exploits massive parallelism by executing many 
concurrent threads;  

– slowly, instead of executing a single long thread in a 
conventional microprocessor very quickly.  

• Lately, parallel GPUs or GPU clusters have been 
garnering a lot of attention against the use of CPUs 
with limited parallelism.  

– General-purpose computing on GPUs, known as GPGPUs, 
have appeared in the HPC field.  

– NVIDIA’s CUDA model was for HPC using GPGPUs. 

34 



How GPUs Work? 
• Early GPUs functioned as coprocessors attached to the CPU.  

• Today, the NVIDIA GPU has been upgraded to 128 cores on a 
single chip.  
– Furthermore, each core on a GPU can handle eight threads of 

instructions.  

– This translates to having up to 1,024 threads executed concurrently on a 
single GPU.  

• This is true massive parallelism, compared to only a few threads 
that can be handled by a conventional CPU.  

• The CPU is optimized for latency caches, while the GPU is 
optimized to deliver much higher throughput with explicit 
management of on-chip memory. 
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How GPUs Work? 
• Modern GPUs are not restricted to accelerated graphics or 

video coding.  
• They are used in HPC systems to power supercomputers with 

massive parallelism at multicore and multithreading levels. 
• GPUs are designed to handle large numbers of floating-point 

operations in parallel.  
– In a way, the GPU offloads the CPU from all data-intensive 

calculations, not just those that are related to video processing.  
– Conventional GPUs are widely used in mobile phones, game 

consoles, embedded systems, PCs, and servers.  

• The NVIDIA CUDA Tesla or Fermi is used in GPU clusters or in 
HPC systems for parallel processing of massive floating-
pointing data. 
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GPU Programming Model 
• Figure 1.7 shows the interaction between a CPU and GPU in 

performing parallel execution of floating-point operations 
concurrently.  

• The CPU is the conventional multicore processor with limited 
parallelism to exploit.  

• The GPU has a many-core architecture that has hundreds of simple 
processing cores organized as multiprocessors. Each core can have 
one or more threads.  

• Essentially, the CPU’s floating-point kernel computation role is largely 
offloaded to the many-core GPU.  

• The CPU instructs the GPU to perform massive data processing.  
• The bandwidth must be matched between the on-board main 

memory and the on-chip GPU memory. 
– This process is carried out in NVIDIA’s CUDA programming using the 

GeForce 8800 or Tesla and Fermi GPUs. 
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GPU Programming Model 
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System-Area Interconnects 
• The nodes in small clusters are mostly interconnected by an 

Ethernet switch or a local area network (LAN).  
• As Figure 1.11 shows, a LAN typically is used to connect client 

hosts to big servers. 
• A storage area network (SAN) connects servers to network 

storage such as disk arrays.  
• Network attached storage (NAS) connects client hosts 

directly to the disk arrays.  
• All three types of networks often appear in a large cluster 

built with commercial network components.  
• If no large distributed storage is shared, a small cluster could 

be built with a multiport Gigabit Ethernet switch plus copper 
cables to link the end machines.  
– All three types of networks are commercially available. 
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System-Area Interconnects 
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Virtual Machines and Virtualization 
Middleware 

• A conventional computer has a single OS image. This 
offers a rigid architecture that tightly couples 
application software to a specific hardware platform.  

• Some software running well on one machine may not 
be executable on another platform with a different 
instruction set under a fixed OS.  

• Virtual machines (VMs) offer novel solutions to 
underutilized resources, application inflexibility, 
software manageability, and security concerns in 
existing physical machines. 
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Virtual Machines and Virtualization 
Middleware 

• Today, to build large clusters, grids, and clouds, we 
need to access large amounts of computing, storage, 
and networking resources in a virtualized manner. 

•  We need to aggregate those resources, and 
hopefully, offer a single system image.  

• In particular, a cloud of provisioned resources must 
rely on virtualization of processors, memory, and I/O 
facilities dynamically.  

• Figure 1.12 illustrates the architectures of three VM 
configurations. 
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Virtual Machines and Virtualization 
Middleware 
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VM Primitive Operations 
• The VMM provides the VM abstraction to the guest OS. With full 

virtualization, the VMM exports a VM abstraction identical to the 
physical machine so that a standard OS such as Windows 2000 or 
Linux can run just as it would on the physical hardware.  

• Low-level VMM operations are indicated by Mendel Rosenblum 
[41] and illustrated in Figure 1.13. 
– First, the VMs can be multiplexed between hardware machines, as shown in 

Figure 1.13(a). 

– Second, a VM can be suspended and stored in stable storage, as shown in 
Figure 1.13(b). 

– Third, a suspended VM can be resumed or provisioned to a new hardware 
platform, as shown in Figure 1.13(c). 

– Finally, a VM can be migrated from one hardware platform to another, as 
shown in Figure 1.13(d). 
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VM Primitive Operations 
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VM Primitive Operations 
• These VM operations enable a VM to be provisioned to any 

available hardware platform.  
• They also enable flexibility in porting distributed 

application executions.  
• Furthermore, the VM approach will significantly enhance 

the utilization of server resources.  
• Multiple server functions can be consolidated on the same 

hardware platform to achieve higher system efficiency.  
• This will eliminate server sprawl via deployment of systems 

as VMs, which move transparency to the shared hardware. 
• With this approach, VMware claimed that server utilization 

could be increased from its current 5–15 percent to 60–80 
percent. 
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System Models for Distributed and 
Cloud Computing 

• Distributed and cloud computing systems are built 
over a large number of autonomous computer 
nodes.  
– These node machines are interconnected by SANs, 

LANs, or WANs in a hierarchical manner. 
– With today’s networking technology, a few LAN 

switches can easily connect hundreds of machines as 
a working cluster.  

• A WAN can connect many local clusters to form a 
very large cluster of clusters. 

•  In this sense, one can build a massive system with 
millions of computers connected to edge networks. 
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System Models for Distributed and 
Cloud Computing 

• Massive systems are considered highly scalable, and 
can reach web-scale connectivity, either physically or 
logically.  

• In Table 1.2, massive systems are classified into four 
groups: clusters, P2P networks, computing grids, and 
Internet clouds over huge data centers.  

• In terms of node number, these four system classes 
may involve hundreds, thousands, or even millions of 
computers as participating nodes. 
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Cluster Architecture 
• A computing cluster consists of  interconnected stand-alone 

computers which work   cooperatively as a single integrated 
computing resource.  

• In the past, clustered computer systems have demonstrated 
impressive results in handling heavy workloads with large data 
sets. 

• Figure 1.15 shows the architecture of a typical server cluster 
built around a low-latency, high bandwidth interconnection 
network.  
– This network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g., 

Ethernet). To build a larger cluster with more nodes, the  interconnection 
network can be built with multiple levels of Gigabit Ethernet, Myrinet, or 
InfiniBand switches.  
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Cluster Architecture 
• Through hierarchical construction using a SAN, LAN, or WAN, 

one can build scalable clusters with an increasing number of 
nodes. 

• The cluster is connected to the Internet via a virtual private 
network (VPN) gateway.  

• The gateway IP address locates the cluster.  

• The system image of a computer is decided by the way the OS 
manages the shared cluster resources.  

• Most clusters have loosely coupled node computers.  

• All resources of a server node are managed by their own OS.  

• Thus, most clusters have multiple system images as a result of 
having many autonomous nodes under different OS control. 
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Cluster Architecture 
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Peer-to-Peer Network Families 
• An example of a well-established distributed system is 

the client-server architecture.  

• In this scenario, client machines (PCs and workstations) 
are connected to a central server for compute, e-mail, 
file access, and database applications.  

• The P2P architecture offers a distributed model of 
networked systems.  

• First, a P2P network is client-oriented instead of 
server-oriented.  

• In this section, P2P systems are introduced at the 
physical level and overlay networks at the logical level. 
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Peer-to-Peer Network Families 
• In a P2P system, every node acts as both a client and a 

server, providing part of the system resources.  
– Peer machines are simply client computers connected to 

the Internet.  
– All client machines act autonomously to join or leave the 

system freely.  

• This implies that no master-slave relationship exists 
among the peers.  
– No central coordination or central database is needed.  

• In other words, no peer machine has a global view of 
the entire P2P system.  
– The system is self-organizing with distributed control. 
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Peer-to-Peer Network Families 
• Figure 1.17 shows the architecture of a P2P network at two 

abstraction levels. 
•  Initially, the peers are totally unrelated.  
• Each peer machine joins or leaves the P2P network 

voluntarily.  
• Only the participating peers form the physical network at any 

time.  
• Unlike the cluster or grid, a P2P network does not use a 

dedicated interconnection network.  
• The physical network is simply an ad hoc network formed at 

various Internet domains randomly using the TCP/IP and NAI 
protocols.  
– Thus, the physical network varies in size and topology dynamically 

due to the free membership in the P2P network. 
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Peer-to-Peer Network Families 
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Cloud Computing over the Internet 
• Cloud computing has been defined differently by 

many users and designers.  

– For example, IBM, a major player in cloud computing, has 
defined it as follows: “A cloud is a pool of virtualized 
computer resources”.  

• A cloud can host a variety of different workloads, 
including batch-style backend jobs and interactive and 
user-facing applications.”  

– Based on this definition, a cloud allows workloads to be 
deployed and scaled out quickly through rapid provisioning 
of virtual or physical machines.  
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Cloud Computing over the Internet 

• The cloud supports redundant, self-recovering, 
highly scalable programming models that allow 
workloads to recover from many unavoidable 
hardware/software failures.  

• Finally, the cloud system should be able to monitor 
resource use in real time to enable rebalancing of 
allocations when needed. 

• Cloud computing applies a virtualized platform with 
elastic resources on demand by provisioning 
hardware, software, and data sets dynamically (see 
Figure 1.18).  
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Internet Clouds 
• The idea is to move desktop computing to a service-oriented 

platform using server clusters and huge databases at data 
centers. 
– Cloud computing leverages its low cost and simplicity to benefit both 

users and providers.  

• Machine virtualization has enabled such cost-effectiveness. 
Cloud computing intends to satisfy many user applications 
simultaneously. The cloud ecosystem must be designed to be 
secure, trustworthy, and dependable.  
– Some computer users think of the cloud as a centralized resource 

pool.  

– Others consider the cloud to be a server cluster which practices 
distributed computing over all the servers used. 
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Internet Clouds 
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The Cloud Landscape 
• Traditionally, a distributed computing system tends to 

be owned and operated by an autonomous 
administrative domain (e.g., a research laboratory or 
company) for on-premises computing needs. 

• However, these traditional systems have encountered 
several performance bottlenecks:  
– constant system maintenance, poor utilization, and 

increasing costs associated with hardware/software 
upgrades. 

• Cloud computing as an on-demand computing 
paradigm resolves or relieves us from these problems. 

• Figure 1.19 depicts the cloud landscape and major 
cloud players, based on three cloud service models. 
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The Cloud Landscape 
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The Cloud Landscape 

• Infrastructure as a Service (IaaS): 

–  This model puts together infrastructures demanded by 
users—namely servers, storage, networks, and the data 
center fabric.  

– The user can deploy and run on multiple VMs running 
guest OSs on specific applications.  

– The user does not manage or control the underlying cloud 
infrastructure, but can specify when to request and release 
the needed resources. 
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The Cloud Landscape 
• Platform as a Service (PaaS) 

–  This model enables the user to deploy user-built 
applications onto a virtualized cloud platform.  

– PaaS includes middleware, databases, development tools, 
and some runtime support such as Web 2.0 and Java.  

– The platform includes both hardware and  software 
integrated with specific programming interfaces.  

– The provider supplies the API and software tools (e.g., 
Java, Python, Web 2.0, .NET).  

– The user is freed from managing the cloud infrastructure. 
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The Cloud Landscape 
• Software as a Service (SaaS): 

–  This refers to browser-initiated application software over 
thousands of paid cloud customers.  

– The SaaS model applies to business processes, industry 
applications, consumer relationship management (CRM), 
enterprise resources planning (ERP), human resources 
(HR), and collaborative applications.  

– On the customer side, there is no upfront investment in 
servers or software licensing.  

– On the provider side, costs are rather low, compared with 
conventional hosting of user applications. 
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The Cloud Landscape 
• Internet clouds offer four deployment modes: 

private, public, managed, and hybrid.  

• These modes demand different levels of security 
implications.  

– The different SLAs imply that the security responsibility is 
shared among all the cloud providers, the cloud resource 
consumers, and the third party cloud-enabled software 
providers.  

• Advantages of cloud computing have been advocated 
by many IT experts, industry leaders, and computer 
science researchers. 
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The Cloud Landscape 
• The following list highlights eight reasons to adapt the cloud 

for upgraded Internet applications and web services: 
1.  Desired location in areas with protected space and higher energy 

efficiency. 
2. Sharing of peak-load capacity among a large pool of users, 

improving overall utilization. 
3. Separation of infrastructure maintenance duties from domain-

specific application development. 
4. Significant reduction in cloud computing cost, compared with 

traditional computing paradigms. 
5. Cloud computing programming and application development. 
6. Service and data discovery and content/service distribution. 
7. Privacy, security, copyright, and reliability issues. 
8. Service agreements, business models, and pricing policies. 
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Software Environments for Distributed 
Systems and Clouds 

• This section introduces popular software environments 
for using distributed and cloud computing systems: 

– Service-Oriented Architecture (SOA) 

– Layered Architecture for Web Services and Grids 

– Web Services and Tools 

– The Evolution of SOA 

– Grids versus Clouds 
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Service-Oriented Architecture (SOA) 

• In grids/web services, Java, and CORBA, an entity is, 
respectively, a service, a Java object, and a CORBA 
distributed object in a variety of languages.  

• These architectures build on the traditional seven Open 
Systems Interconnection (OSI) layers that provide the 
base networking abstractions.  

• On top of this we have a base software environment, 
which would be .NET or Apache Axis for web services, 
the Java Virtual Machine for Java, and a broker network 
for CORBA.  

• On top of this base environment one would build a 
higher level environment of the distributed computing 
environment. 
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Service-Oriented Architecture (SOA) 
• SOA  starts with entity interfaces and inter-entity communication, 

which rebuild the top four OSI layers but at the entity and not the 
bit level. Figure 1.20 shows the layered architecture for 
distributed entities used in web services and grid systems. 
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Layered Architecture for Web Services 
and Grids 

• The entity interfaces correspond to the Web Services Description 
Language (WSDL), Java method, and CORBA interface definition 
language (IDL) specifications in these example distributed 
systems.  
– These interfaces are linked with customized, high-level communication 

systems: SOAP, RMI, and IIOP in the three examples.  

• These communication systems support features including 
particular message patterns such as Remote Procedure Call or 
RPC, fault recovery, and specialized routing.  

• Often, these communication systems are built on message-
oriented middleware infrastructure such as Web-Sphere MQ or 
Java Message Service (JMS). 
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Layered Architecture for Web Services 
and Grids 

• In the case of fault tolerance, the features in the 
Web Services Reliable Messaging (WSRM) 
framework mimic the OSI layer capability (as in TCP 
fault tolerance) modified to match the different 
abstractions (such as messages versus packets, 
virtualized addressing) at the entity levels.  

• Security is a critical capability that either uses or re-
implements the capabilities seen in concepts such as 
Internet Protocol Security (IPsec) and secure sockets 
in the OSI layers. 
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Web Services and Tools 
• Loose coupling and support of heterogeneous 

implementations make Web services more attractive 
than distributed objects.  

• Figure 1.20 corresponds to two choices of service 
architecture: web services or REST systems. 

• Both web services and REST systems have very distinct 
approaches to building reliable interoperable systems. 

•  In web services, one aims to fully specify all aspects of 
the service and its environment.  

• This specification is carried with communicated 
messages using Simple Object Access Protocol (SOAP). 
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Web Services and Tools 
• The hosting environment then becomes a universal 

distributed operating system with fully distributed 
capability carried by SOAP messages.  

– This approach has mixed success as it has been hard to 
agree on key parts of the protocol and even harder to 
efficiently implement the protocol by software such as 
Apache Axis. 

• In the REST approach, one adopts simplicity as the 
universal principle and delegates most of the 
difficult problems to application (implementation-
specific) software.  
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Web Services and Tools 
• In a web services language, REST has minimal 

information in the header, and the message body (that 
is opaque to generic message processing) carries all the 
needed information. 
– REST architectures are clearly more appropriate for rapid 

technology environments.  

• However, the ideas in web services are important and 
probably will be required in mature systems at a 
different level in the stack (as part of the application). 
– Note that REST can use XML schemas but not those that 

are part of SOAP; “XML over HTTP” is a popular design 
choice in this regard.  
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The Evolution of SOA 
• As shown in Figure 1.21, service-oriented 

architecture (SOA) has evolved over the years.  

– SOA applies to building grids, clouds, grids of clouds, 
clouds of grids, clouds of clouds (also known as 
interclouds), and systems of systems in general.  

• A large number of sensors provide data-collection 
services, denoted in the figure as SS (sensor 
service).  

– A sensor can be a ZigBee device, a Bluetooth device, a 
WiFi access point, a personal computer, a GPA, or a 
wireless phone, among other things. 
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The Evolution of SOA 

• Raw data is collected by sensor services.  

– All the SS devices interact with large or small 
computers, many forms of grids, databases, the 
compute cloud, the storage cloud, the filter cloud, the 
discovery cloud, and so on.  

• Filter services ( fs in the figure 1.21) are used to 
eliminate unwanted raw data, in order to respond 
to specific requests from the web, the grid, or 
web services. 
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The Evolution of SOA 
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Grids versus Clouds 
• The boundary between grids and clouds are getting blurred in recent 

years.  
• For web services, workflow technologies are used to coordinate or 

orchestrate services with certain specifications used to define critical 
business process models such as two-phase transactions.  

• In general, a grid system applies static resources, while a cloud 
emphasizes elastic resources.  

• For some researchers, the differences between grids and clouds are 
limited only in dynamic resource allocation based on virtualization and 
autonomic computing.  

• One can build a grid out of multiple clouds.  
• This type of grid can do a better job than a pure cloud, because it can 

explicitly support negotiated resource allocation.  
• Thus one may end up building with a system of systems: such as a 

cloud of clouds, a grid of clouds, or a cloud of grids, or inter-clouds as 
a basic SOA architecture. 
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Trends toward Distributed Operating 
Systems 

• The computers in most distributed systems are loosely 
coupled.   
– This is mainly due to the fact that all node machines run with an 

independent operating system.  

• To promote resource sharing and fast communication among 
node machines, it is best to have a distributed OS that 
manages all resources coherently and efficiently. 

• Such a system is most likely to be a closed system, and it will 
likely rely on message passing and RPCs for internode 
communications.  
– It should be pointed out that a distributed OS is crucial for upgrading 

the performance, efficiency, and flexibility of distributed applications. 
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Features of 3 distributed OS 
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Parallel and Distributed Programming 
Models 

• In this section, we will explore four programming 
models for distributed computing with expected 
scalable performance and application flexibility.  

• Table 1.7 summarizes three of these models, along 
with some software tool sets developed in recent 
years. 
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Parallel and Distributed Programming 
Models 
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Message-Passing Interface (MPI) 

• This is the primary programming standard used to 
develop parallel and concurrent programs to run on a 
distributed system.  
– MPI is essentially a library of subprograms that can be 

called from C or FORTRAN to write parallel programs 
running on a distributed system.  

• The idea is to embody clusters, grid systems, and P2P 
systems with upgraded web services and utility 
computing applications. 
– Besides MPI, distributed programming can be also 

supported with low-level primitives such as the Parallel 
Virtual Machine (PVM).  

– Both MPI and PVM are described in Hwang and Xu. 
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MapReduce 
• MapReduce  is a web programming model for 

scalable data processing on large clusters over large 
data sets.  

– The model is applied mainly in web-scale search and 
cloud computing applications.  

• The user specifies a Map function to generate a set 
of intermediate key/value pairs.  

• Then the user applies a Reduce function to merge 
all intermediate values with the same intermediate 
key.  
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MapReduce 

• MapReduce is highly scalable to explore high 
degrees of parallelism at different job levels.  

• A typical MapReduce computation process can 
handle terabytes of data on tens of thousands or 
more client machines: 

– Hundreds of MapReduce programs can be executed 
simultaneously; in fact, thousands of MapReduce  jobs are 
executed on Google’s clusters every day. 
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Hadoop Library 
• Hadoop offers a software platform that was originally 

developed by a Yahoo! group.  
• The package enables users to write and run applications over 

vast amounts of distributed data.  
• Users can easily scale Hadoop to store and process petabytes 

of data in the web space.  
– Also, Hadoop is economical in that it comes with an open source 

version of MapReduce that minimizes overhead in task spawning 
and massive data communication.  

• It is efficient, as it processes data with a high degree of 
parallelism across a large number of commodity nodes, and it 
is reliable in that it automatically keeps multiple data copies 
to facilitate redeployment of computing tasks upon 
unexpected system failures. 
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