
Fundamentals of Python
Part1

(Reference: Fundamentals of Python, K.A
Lambert and B.L Juneja)

1 Asst. Prof. Dr. Anilkumar K.G

Introduction

• Python is an interpreted language, and you can run simple python
expressions and statement in an interactive programming
environment, called the Shell.

• Whether you are running Python code as a script or interactively in a
shell, the Python interpreter does a great deal of work to carry out
the instructions in your program.

• The interpreter reads Python expression or statement called the
source code and verifies that it is well formed.

• In this step, the interpreter behaves like a strict English language
teacher.

2 Asst. Prof. Dr. Anilkumar K.G

Introduction(cont.)

• As soon as the interpreter encounters such an error, it halts
translation with an error message.

• If the python expression is well formed, the interpreter then
translates it to an equivalent form in a lower-level language called
byte code.

• This byte code is next sent to another software component, called the
Python Virtual Machine (PVM) where it is executed.

• If another error occurs during this step, the execution also halts with
an error message.

3 Asst. Prof. Dr. Anilkumar K.G

Introduction(cont.)

• Algorithm: An algorithm is a sequence of instructions for solving a
problem.

• Python scripts: Python scripts are programs that are saved in files and
run from a terminal command prompt.

• Syntax: Syntax is the set of rules for forming correct expressions and
statements in a programming language.

4 Asst. Prof. Dr. Anilkumar K.G

print function

• Syntax of the print function:

 print(<expression1>, <expression2>,……., <expressionn>)

• print(<expression>, end=“ “) would prevent new line of the print
function

5 Asst. Prof. Dr. Anilkumar K.G

input function
 Syntax

 <variable identifier> = input(<a string prompt>)

• How does the input function know what to use as the prompt?

• The text/string prompt is an argument for the input function that tells
it what to use for the prompt.

• The input function always builds a string from the user’s keystrokes
and returns it to the program.

6 Asst. Prof. Dr. Anilkumar K.G

Data Types and Expressions
• In programming, a data type consists of a set of values and a set of

operations that can be performed on those values.

• A literal is the way a value of a data type looks to a programmer.

• String literals ‘’ and “ “ are empty string and “\n” is a new line
character

 Type of Data Type name Literals

Integers int -1, 0, 1, 2,…..

Real numbers float -0.55, 0.333, …

Character strings str “Hi”, “ “, ‘A’, ‘66’, ‘5’,….

7 Asst. Prof. Dr. Anilkumar K.G

Type Conversion
• In Python there are two type conversion functions, called int (for

integers), and float(for floating point numbers)

Function What it does

float(<a string of digits>) Converts a string of digits to a
floating point number

int (<a string of digits>) Converts a string of digits to an
integer value

input (<a string>) Displays the string prompt and waits
for a keyboard input. Returns the
input string to the user

Print(<exp1>, <exp2>,…<expn>) Evaluate the expressions and displays
them and the comma will
concatenate the strings.

<string1> + <string2> Glues the two strings together and
returns the result. 8 Asst. Prof. Dr. Anilkumar K.G

round function

• The round() function rounds a float to the nearest int value.

int1 = float(input("Enter first float: "))

int2 = float(input("Enter second float: "))

sum = int1 + int2

print("The sum of numbers without round is ", sum)

print("The sum of numbers with round is ", round(sum))

Enter first float: 8.5677

Enter second float: 1.234

The sum of numbers is 10

9 Asst. Prof. Dr. Anilkumar K.G

Variable

• A variable associates a name with a value

• Syntax

 <variable_name> = <expression>

Example:

 sum = 20

 name = “Anil”

•Where sum and name are variables, and 20 and “Anil” are expressions

10 Asst. Prof. Dr. Anilkumar K.G

Exercise

• Write a line of code that prompts the user for his/her name and saves
the user’s input in a variable called name.

• Get two floating point numbers from keyboard and print their sum.

11 Asst. Prof. Dr. Anilkumar K.G

Escape sequence

\b is the backspace
\n is the newline
\t is the horizontal tab
\\ is the \ character
\’ is the single quotation
\” is the double quotation

12 Asst. Prof. Dr. Anilkumar K.G

String Concatenation

• Use concatenation operator +

 Print(“Hello” + “How are you?”)

13 Asst. Prof. Dr. Anilkumar K.G

* operator

• In python, the * operator allows you to build a string by repeating
another string a given number of times.

• For example, if you want the string “python” to be proceeded by 30
spaces;

 print(" " * + 30 "Python")

This will print “Python” after 30 space characters

14 Asst. Prof. Dr. Anilkumar K.G

ord and chr function

• Python’s ord and chr functions convert charters to their numeric
ASCII codes and back again respectively.

• Example of ord function:

 val = ‘a’

 print(ord(val)) #convert a character into its ASCII code

 OUTPUT is 97

• Example of chr function:

 val = 97

 Print(chr(val)) #converts ASCII code into character

15 Asst. Prof. Dr. Anilkumar K.G

Expressions Operator Meaning Syntax

 Negation a

** Exponentiation a ** b

* Multiplication a * b

/ Division a / b

// Quotient a // b

% Remainder/Modulus a % b

+ Addition a + b

- Subtraction a - b

16 Asst. Prof. Dr. Anilkumar K.G

Precedence Rule

• Exponentiation has the highest precedence.

• Negation is evaluated next.

• Multiplication, division, remainder are evaluated before
addition and subtraction

• Addition and subtraction are evaluated before assignment.

17 Asst. Prof. Dr. Anilkumar K.G

Precedence Rule

• Precedence rule – Example:
1. 5 + 3 * 2 = 5 + 6 = 11

2. (5 + 3) * 2 = 8 * 2 = 16

3. 6 % 2 = 0

4. 2 * 3 ** 2 = 2 * 9 = 18

5. 3 ** 2 = 32 = 9

6. 2 ** 3 ** 2 = 2 ** 9 = 29 = 512

7. (2 ** 3) ** 2 = 23 ** 2 = 82 = 64

8. 45 / 2 = 22.5 (returns a float result)

9. 45 // 2 = 22 (returns an integer result)
10. 45 / 0 = error

18 Asst. Prof. Dr. Anilkumar K.G

Type Conversion

No. Type(<expression>) Example

1 int(<a floating point number>) int(3.77) = 3

2 int(<string>) Int(“33”) = 33

3 float(<an integer number>) float(22) = 22.0

4 float(<string>) float(“22”) = 22

5 Str(<any value>) Str(99) = “99”

19 Asst. Prof. Dr. Anilkumar K.G

Augmented Assignment
• The assignment symbol can be combined with the arithmetic and

concatenation operators to provide augmented assignment operations.

• Syntax: <variable><operator>= <expression>

20

No. Augmented Assignment Meaning

1 a += 3 a = a + 3

2 a -= 3 a = a - 3

3 a *= 3 a = a * 3

4 a /= 3 a = a / 3

5 a %= 3 a = a % 3

6 a += “Hello” a = a + “Hello”
Asst. Prof. Dr. Anilkumar K.G

The math Module

• The math module includes several functions that perform basic
mathematical operations.

• To use a resource from a module, you write the name of a module as
a qualifier, followed by dot (‘.’) and the name of the resource.

• Example:

 import math

 print(math.pi) # 3.14563777288942

 print(math.pow(8,2)) #64.0

 print(math.pow(5,4)) #625.0

21 Asst. Prof. Dr. Anilkumar K.G

Get Help for a math Function
• The following example shows how to get help for a cosine function:

 print(help(math.cos))

• If you are going to use only a couple of module’s resources frequently, you
can avoid the use of the qualifier with each reference by importing the
individual resources as follows:

 from math import pi, sqrt

 print(pi, sqrt(2))

• This way you can avoid the usage of the “math.” before any math function.

 from math import*
• would import all of the math module’s resources

22 Asst. Prof. Dr. Anilkumar K.G

Printing math values in defined precisions

• For example, check the result of pi from the math module:

 import math

 print(math.pi)

output: 3.141592653589793

• The following syntax is implemented to print the pi value in a defined
precision and space:

 “%<field width>.<precision>f” % float variable/value

• For example, print the two decimal point value of pi by:

 print(“pi is %0.2f” % math.pi) Output: pi is 3.14

23 Asst. Prof. Dr. Anilkumar K.G

Income Tax Calculator
• The customer requests a program that computes a person’s income tax.

• Let us assume the following tax laws:
1. All taxpayers are charged a flat tax rate of 20%.

2. All taxpayers are allowed a 10,000$ standard deduction.

3. For each dependent, a taxpayer is allowed an additional 3,000$ deduction.

4. Gross income must be entered.

5. The income tax is expressed as a decimal number.

• Formule:

 Taxable_income = Gross income – 10,000 – (3,000 * no. of dependents)

 Income_tax = Taxable_income * tax_rate

24 Asst. Prof. Dr. Anilkumar K.G

TAX_TATE = 0.20 # 20%

STANDARD_DEDUCTION = 10000.0

DEPENDENT_DEDUCTION = 3000.0

#Request the gross income

grossIncome = float(input(" Enter the gross income <minimum
10,000>:"))

numDependents = int(input(" Enter the number of dependents: "))

#Compute the inmcome tax

taxableIncome = grossIncome - STANDARD_DEDUCTION - \
(DEPENDENT_DEDUCTION * numDependents)

incomeTax = taxableIncome * TAX_TATE

print("The income tax is $" + str(incomeTax))

Output:
Enter the gross income <minimum 10,000>: 20000
 Enter the number of dependents: 2
The income tax is $800.0

25 Asst. Prof. Dr. Anilkumar K.G

Practice Questions
• Write a program that takes the radius of a sphere as input and outputs

the following:

 - sphere’s diameter

 - circumference

 -surface area

 - volume

• Write a program that calculates and prints the number of minutes in a
year.

• Light travels at 3 x 108 meters per second. A light year is the distance a
light beam travels in one year. Write a program that calculates and
displays the value of a light year.

26 Asst. Prof. Dr. Anilkumar K.G

Control Statements - Loops

• Iteration: Each repetition of the action is known as a pass or iteration.

• Loops: A Loop is a programming structure for iteration.

• There are two types of loops:
1. Those that repeat an action a predefined number of times, called definite

loops (or definite iteration).

2. Those that perform the action until the program determines that it needs to
stop, called indefinite loops (or indefinite iteration).

27 Asst. Prof. Dr. Anilkumar K.G

The for Loop
• Syntax of the for loop:

 for <variable> in range (<an integer expression>):

 <loop body statements>

• Note that the statements in the loop body must be indented and
aligned in the same column.

• Exampe1: Print “Hello” 5 times with the for loop

for x in range (5): #prints “Hello” 5 times with a newline

 print("Hello")

for x in range (5): #prints “Hello” 5 times without a newline

 print("Hello", end=" ")

28 Asst. Prof. Dr. Anilkumar K.G

The for Loop (cont.)
• Exampe2: Print 0-5 with the for loop

 for count in range (5): #prints each digit with a newline

 print("count = ", count, "and", range(5))

• Output of the above for loop program is shown below:

• What did you understand from this Output?

29

count = 0 and range(0, 5)

count = 1 and range(0, 5)

count = 2 and range(0, 5)

count = 3 and range(0, 5)

count = 4 and range(0, 5)

Asst. Prof. Dr. Anilkumar K.G

The for Loop (cont.)
• It means that, the range function has two arguments, the first arguments

is zero, and the latter one is an integer (a non zero value).

• Hence we can re-write the for loop program as below:

for count in range (0,5): #prints from 0 to 4 (5-1) in a newline

 print("count = ", count)

• The output of the above for loop program can be given as:

30

count = 0

count = 1

count = 2

count = 3

count = 4
Asst. Prof. Dr. Anilkumar K.G

for loop with Two Variables in range Function
• When two arguments are supplied to range function of the for loop, the

count ranges from the first argument to the second argument minus 1.

• Syntax for <variable> in range (<lower bound>, <upper bound>):

 <loop body>

• Example1:

for count in range (1,5): # prints from 1 to 4 (5-1) with newline

 print(count)

31

count = 1

count = 2

count = 3

count = 4

Asst. Prof. Dr. Anilkumar K.G

for loop with Two Variables in range Function

• Example2: Get the lower and upper values and shows the sum of values
from lower to upper.

lower = int(input(" Enter the lower bound: "))

upper = int(input(" Enter the upper bound: "))

sum = 0

for count in range (lower, upper + 1):

 print(count)

 sum += count

print(" The sum from ", lower, "to", upper, "is", sum)

32 Asst. Prof. Dr. Anilkumar K.G

Class Exercises

• Write a program that can find the factorial of a positive integer
number.

• Get a string from user and display its characters ASCII values.

33 Asst. Prof. Dr. Anilkumar K.G

Analyzing the range function using the list
function

• The list function can be used to analyze the meaning of the range function in a
for loop by converting its elements as a list, [].

for count in range (5): # prints digits from 0 to 4 (5-1) with newline

 print(count)

• The range(5)can be analyzed with the list function as shown below:

 print(list(range(5))) # would output: [0, 1, 2, 3, 4] => a list

 print(list(range(1,5))) # would output: [1, 2, 3, 4] => a list

• It means that the range(<expression>)of a for loop is just a list of
elements, and it can be represented as [1,2,3,……,n].

34 Asst. Prof. Dr. Anilkumar K.G

Analyzing the range function using the list
function
• Consider the following for loop program:

for number in range(1,6):

 print(“number = “, number)

• The range (1,6) is equivalent to [1,2,3,4,5]as shown
below:

for number in [1, 2, 3, 4, 5]:

 print(“number =“, number)

35

number = 1

number = 2

number = 3

number = 4

number = 5

number = 1

number = 2

number = 3

number = 4

number = 5

Asst. Prof. Dr. Anilkumar K.G

The range Function with a Third Argument
• The range function expects a third argument that allows you to skip

some numbers from the loop result.

• The third argument specifies a step value or the interval between the
number used in the range, as shown below:

for count in range(2, 11, 2):

 print("count = ", count)

36

count = 2

count = 4

count = 6

count = 8

count = 10

Asst. Prof. Dr. Anilkumar K.G

The range Function with a Third Argument
• A for loop that counts down with a three-argument range function.

• The following program would count from 10 to 1:

for count in range(10, 0, -1):

 print("count = ", count)

• Write a program that can print from 10 to 0.

37

count = 10
count = 9
count = 8
count = 7
count = 6
count = 5
count = 4
count = 3
count = 2
count = 1

Asst. Prof. Dr. Anilkumar K.G

The range Function with a Third Argument
• Consider the following for loop program:

for count in range(10, 0, -1):

 print(count, end=“”)

Output is not a list: 10 9 8 7 6 5 4 3 2 1

• which can be re-write into the following with the list function to get a
result in the list form:

print(list(range(10, 0, -1)))

Output is a list: [10,9,8,7,6,5,4,3,2,1]

38 Asst. Prof. Dr. Anilkumar K.G

Exercise

• Write the outputs of the following loops:
• for count in range(5):

 print(count + 1, end=“ “)

• for count in range(1, 4):

 print(count, end=“ “)

• for count in range(1, 6, 2):

 print(count, end=“ “)

• for count in range(6, 1, -1):

 print(count, end=“ “)

39 Asst. Prof. Dr. Anilkumar K.G

Formatting Text for Output
• Many data-processing applications require output that has a tabular

format.

• In this format, numbers and other information are aligned in columns that
can be either left-justified or right-justified.

• The total number of data characters and additional spaces for a given
datum in a formatted string is called its field width.

40 Asst. Prof. Dr. Anilkumar K.G

Formatting Text for Output
• The example, which displays the exponents 7 through 10 and the values of

107 through 1010 shows the format of two columns produced by the print
function:

 for x in range (7, 11):

 print(x, 10 ** x)

41

7 10000000
8 100000000
9 1000000000
10 10000000000

Asst. Prof. Dr. Anilkumar K.G

Formatting Text for Output

• The following code would show how to right-justify the output of the
previous exponent program:

for x in range (1, 11):

 print("%4d%15d" % (x, 10 ** x))

• The following code would show how to left-justify the output of the
previous exponent program:

for x in range (1, 11):

 print("%-4d%-18d" % (x, 10 ** x))

42 Asst. Prof. Dr. Anilkumar K.G

Case study: An Investment Report

• The input:
1. Starting investment amount (float)

2. Number of years (int)

3. Interest rate (int)

• The report is displayed in tabular form with a header.

• The computations and outputs:
• For each year, compute the interest and add it to the investment and print a

formatted row of results for that year.

• The ending investment and interest earned are also displayed.

43 Asst. Prof. Dr. Anilkumar K.G

#Accept the inputs

startBalance = float(input("Enter the investment amount: "))

years = int(input("Enter the number of years: "))

rate = int(input("Enter the yearly rate in %: "))

#Convert the rate into a decimal

rate /= 100

#Initialize the total interest variable

totalInterest = 0.0

#Create the display header for the table

print("\n%4s%18s%10s%16s"% ("Year", "Starting balance", "Interest", "Ending
balance"))

#Compute and display the result for each year

for year in range (1, years + 1):

 interest = startBalance * rate

 endbalance = startBalance + interest

 print("%4d%18.2f%10.2f%16.2f" % (year, startBalance, interest, endbalance))

 startBalance = endbalance

 totalInterest += interest

#Display the totals for the given period

print("Ending balance: $%0.2f" % endbalance)

print("Total interest earned: $%0.2f" % totalInterest)
44 Asst. Prof. Dr. Anilkumar K.G

The Boolean Type Comparison and Expressions
• The Boolean data type consists of only two data values:

• True

• False

• The python’s comparison operators, that cause Boolean values are listed
below:

45

Comparison Operator Meaning

== Equals

!= Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal
Asst. Prof. Dr. Anilkumar K.G

The Boolean Type Comparison and Expressions

• The following shows the examples of comparisons:

46

print(4 == 4)
print(4 == 5)
print(4 != 4)
print(4 != 5)
print(4 < 5)
print(4 < 3)
print(4 <= 4)
print(4 <= 5)
print(4 <= 3)
print(4 > 3)
print(4 > 5)
print(4 >= 4)
print(4 >= 5)
print(4 >= 3)

True
False
False
True
True
False
True
True
False
True
False
True
False
True

Asst. Prof. Dr. Anilkumar K.G

Selection: if and if-else Statements

• In if/if else statement, the computer must pause to examine or test a
condition, which express a hypothesis about the state of its world at
that point of time:
• If the condition is True, the computer executes the first alternative action and

skips the second alternative.

• If the condition is False, the computer skips the first alternative, and executes
the second alternative.

47 Asst. Prof. Dr. Anilkumar K.G

if, the one-way Selection Statement
• The simplest for of selection is the if statement. This type of control

statement is called a one-way selection statement, because it consists of
a condition and just a single sequence of statements.
• If the condition is True, the sequence of statements is run.

• Otherwise, control proceeds to the next statement following the entire selection
statement.

• Syntax for the if statement:

 if<condition>:

 <sequence of statements>

48 Asst. Prof. Dr. Anilkumar K.G

if, the one-way Selection Statement

• The following code would confirm your “A” grade:

mark = int(input(" Enter your final mark (out of 100): "))

if mark >= 90:

 print(" Your grade is ", "A")

49

Enter your final mark (out of 100): 90

 Your grade is A

Asst. Prof. Dr. Anilkumar K.G

if, the one-way Selection Statement
• Get an integer number from user and if it is less than or equal to 10,

then prints the range of numbers from 0 up to the number with their
exponent with 10 in a right aligned format.

number = int(input(" Enter an integer number: "))

if number <= 10:

 for x in range(number + 1):

 print("%4d%10d" % (x, 10 ** x))

50

Enter an integer number: 7
 0 1
 1 10
 2 100
 3 1000
 4 10000
 5 100000
 6 1000000
 7 10000000

Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement
• The if-else statement (also called a two-way selection) is the most

common type of selection statement, because it directs the computer to
make a choice between two alternative courses of action.

• Here is the Python syntax for the if-else statement:

 if<condition/test expression>:

 <body of if: sequence of statement>

 else:

 <body of else: sequence of statement>

51 Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement
• Example1:

mark = int(input("Enter your final mark <out of 100>: "))

if mark >= 90:

 print("You have 'A' grade!")

else:

 print("Your grade is not A!")

52 Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement

• Example2:
first = int(input("Enter the first number: "))

second = int(input("Enter the second number: "))

if first >= second:

 maximum = first

 minimum = second

else:

 maximum = second

 minimum = first

print(" The maximum is ", maximum)

print(" The minimum is ", minimum)

53

Enter the first number: 23

Enter the second number: 45

 The maximum is 45

 The minimum is 23

Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement
• Example 3:
import math

area = float(input("Enter the area of the circle: "))

if area > 0:

 radius = math.sqrt(area / math.pi)

 print("The radius of the circle is %0.2f" % radius)

else:

 print("Error, the area must be a positive number!")

54

Enter the area of the circle: 4536.89

The radius of the circle is 38.00

Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements
• The multi-way if statement is useful when a program is faced with

testing several conditions that entail more than two alternative courses
of action.

• The multi-way if statement considers each condition until one evaluates
to True or they all evaluate to False. The Python syntax is the following:

 if <condition1>:

 <sequence of statement1>

 elif <conditionn>:

 <sequence of statementn>

 else:

 <default sequence of statements>

55 Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements
• Example1: Consider the problem of converting marks to letter grads, based on

the following information:
• Grade “A” = all marks above 89
• Grade “B” = all marks above 79 and below 90
• Grade “C” = all marks above 69 and below 80
• Grade “F” = all marks below 70

mark = int(input(" Enter your final mark <out of 100>: "))

if mark > 89:

 grade = "A"

elif mark > 79:

 grade = "B"

elif mark > 69:

 grade = "C"

else:

 grade = "F"

print(" Your garde is ", grade)
56 Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements
• Often a course of action must be taken if either of two

conditions is true.

• For example, valid inputs to a program often lie within a given
range of values.

• Any input above this range should be rejected with an error
message, and any input below this range should be dealt with
in a similar fashion.

57 Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements
mark = int(input(" Enter your final mark <out of 100>: "))

if mark > 100:

 print("Error! The mark must be between 0 and 100.")

elif mark < 0:

 print("Error! The mark must be between 0 and 100.")

else:

 if mark > 89:

 grade = "A"

 elif mark > 79:

 grade = "B"

 elif mark > 69:

 grade = "C"

 else:

 grade = "F"

 print(" Your garde is ", grade)

58

 Enter your final mark <out of 100>: 120

Error! The mark must be between 0 and 100.

 Enter your final mark <out of 100>: -30

Error! The mark must be between 0 and 100.

 Enter your final mark <out of 100>: 78

 Your garde is C

Asst. Prof. Dr. Anilkumar K.G

Logical Operators and Compound Boolean
Expressions
• Note that the first two conditions (from the previous multi-way if

program) are associated with identical actions.

• The two conditions can be combined in a Boolean expression that
uses the logical operator or.

• The resulting compound Boolean expression is given as:

59

mark = int(input(" Enter your final mark <out of 100>: "))

if mark > 100 or mark < 0:

 print("Error! The mark must be between 0 and 100.")

else:

 # the code to compute grade here

Asst. Prof. Dr. Anilkumar K.G

Logical Operators and Compound Boolean
Expressions

• Yet another way to describe this situation is to use the Boolean logical
operator and:

60

mark = int(input(" Enter your final mark <out of 100>: "))
if mark >= 0 and mark <= 100:
 if mark > 89:
 grade = "A"
 elif mark > 79:
 grade = "B"
 elif mark > 69:
 grade = "C"
 else:
 grade = "F"
 print(" Your garde is ", grade)
else:
 print("Error! The mark must be between 0 and 100.")

Asst. Prof. Dr. Anilkumar K.G

Logical Operators and Compound Boolean
Expressions
• Python includes three Boolean logical operators, and, or, and not.

• Both the and, and or operators expect two operands.
• The and operator returns True if and only if both of its operands are true, and

returns False otherwise.
• The or operator returns False if and only if both of its operands are false, and return

True otherwise.
• The not operator expects a single operand and returns its logical negation; True if it’s

false, and False if it’s true.
A = True

B = False

print(A and B)

print(A or B)

print(not A)

61

False

True

False

Asst. Prof. Dr. Anilkumar K.G

Operator Precedence from Highest to Lowest
Operator Symbol

Exponentiation **

Arithmetic negation 

Multiplication, division,
remainder

*, /, %

Addition, subtraction +, 

Comparison ==, !=, <, >, <=, >=

Logical negation not

Logical conjunction and
disjunction

and , or

Assignment =
62 Asst. Prof. Dr. Anilkumar K.G

Conditional Iteration: The while loop
• Earlier we examined the for loop, which executes a set of statements a

definite number of times specified by the programmer.

• In many situations, the number of iterations in a loop is unpredictable.

• The loop eventually completes its work, but only when a condition
changes.
• For example, the user might be asked for a set of input values. The program’s input

loop accepts these values until the user enters a special value or sentinel that
terminates the loop.

• This type of process is called conditional iteration.

• This section explores the while loop to describe conditional iteration.

63 Asst. Prof. Dr. Anilkumar K.G

The Structure and Behavior of a while Loop
• Conditional iteration requires that a condition be tested within the loop

to determine whether the loop should continue.

• Such a condition is called the loop’s continuation condition:
• If the continuation condition is false, the loop ends.

• If the continuation condition is true, the statements within the loop body are
executed again.

• Syntax for the while loop:

64

 while<condition>:
 <statements in the loop body>

Asst. Prof. Dr. Anilkumar K.G

while loop: Examples
• Get a set of numbers from the user until the user press the enter key (return

key) and prints their sum. The program recognize this value (enter key value)
as the empty string.

• Pseudocode algorithm:

 set the sum to 0.0

 input a string

 while the string is not the empty string

 convert the string to a float

 add the float to the sum

 input a string

 print the sum

65 Asst. Prof. Dr. Anilkumar K.G

while loop: Examples
• Here is the Python code:
sum = 0.0

data = input("Enter a number or just enter to quit: ")

while data != "":

 number = float(data)

 sum += number

 data = input("Enter a number or just enter to quit: ")

print("The sum is ", sum)

66

Enter a number or just enter to quit: 1

Enter a number or just enter to quit: 2

Enter a number or just enter to quit: 3

Enter a number or just enter to quit: 4

Enter a number or just enter to quit:

The sum is 10.0
Asst. Prof. Dr. Anilkumar K.G

Count Control with a while Loop
• You can also use a while loop for a count-controlled loop as a for loop. For

example see a summation code with a for loop and a while loop below:
sum = 0.0

for x in range(1, 1001):

 sum += x

print("Sum of numbers from 1 to 1000 is ", sum)

• The same program with a while loop:
sum = 0.0

lcv = 1

while lcv <= 1000:

 sum += lcv

 lcv += 1

print("The sum of numbers from 1 to 1000 is ", sum)

Asst. Prof. Dr. Anilkumar K.G 67

Count Control with a while Loop
• By contrast, a for loop specifies the control information concisely in the

header and automates its manipulation behind the scenes.

• The next example shows how the for loop and while loop are supporting
in a count down application:
for x in range(10, 0, -1):

 print(x)

• Count down with while loop:
LCV = 10

while LCV >= 1:

 print(LCV)

 LCV -= 1

Asst. Prof. Dr. Anilkumar K.G 68

The true while loop with break Statement
• Python includes a break statement that will allow us to break a true while

loop (an infinite loop) with if – else statement:
sum = 0.0

while True:

 number = input("Enter a number or just enter to quit: ")

 if number != "":

 sum += float(number)

 else:

 break

print(sum)

Asst. Prof. Dr. Anilkumar K.G 69

The true while loop with break Statement
• The previous true while loop script with a break statement can be modified

with an if statement:
sum = 0.0

while True:

 number = input("Enter a number or just enter to quit: ")

 if number == "":

 break

 sum += float(number)

print(sum)

Asst. Prof. Dr. Anilkumar K.G 70

The true while loop with break Statement
• The next example modifies the input section of the grade-conversion program to

continue taking input numbers from the user until the user enters an acceptable
value:

while True:

 mark = int(input("Enter your total mark <0-100>: "))

 if mark >= 0 and mark <= 100:

 break

 else:

 print("Error! The mark must be between 0 and 100.")

if mark > 89:

 print("Your grade is A.")

elif mark > 79:

 print("Your grade is B.")

elif mark > 69:

 print("Your garde is C.")

else:

 print("Your grade is F.")

Asst. Prof. Dr. Anilkumar K.G 71

Enter your total mark <0-100>: 345

Error! The mark must be between 0 and 100.

Enter your total mark <0-100>: 97

Your grade is A.

Exercises
• Translate the following for loops to equivalent while loops:

1. for count in range(100):

 print(count)

2. for count in range(1, 101):

 print(count)

3. for count in range(100, 0, -1):

 print(count)

Asst. Prof. Dr. Anilkumar K.G 72

Exercises

• Write a while loop that computes the factorial of a given integer N.

• The log2 of a given number N is given by M in the equation N = 2M.
The value of M is approximately equal to the number of times N can
be evenly divided by 2 until it becomes 0. Write a loop that computes
this approximation of the log2 of a given number N.

Asst. Prof. Dr. Anilkumar K.G 73

Random Numbers
• Python’s random module supports the random value generation. The

function randint (in random module) returns a random number from among
the numbers between the two arguments and including those numbers.

• Syntax:
 import random

 rand_value = random.randint(start_integer, final_integer)

• For example, see the results from rolling a die 10 times:
import random

for x in range(0, 10):

 value = random.randint(1, 6) #print random values

 print(value) # including 1 and 6

Asst. Prof. Dr. Anilkumar K.G 74

Random Numbers
• Write a guessing program that allows the user to enter a smaller number

and a larger number and guess the randint function generated value from
the smaller and the larger numbers.

Asst. Prof. Dr. Anilkumar K.G 75

Exercises
• Write a program that accepts the lengths of three sides of a triangle as

inputs. The program output should indicate whether or not the triangle is an
equilateral triangle.

• Write a program that accepts the lengths of three sides of a triangle as
inputs. The program output should indicate whether or not the triangle is a
right triangle (from the Pythagorean theorem that in a right triangle, the
square of one side equals the sum of the squares of the other two sides.

• Write a program that receives a series of numbers from the user and allows
the user to press the enter key to indicate that he/she is finished providing
inputs. After the user presses the enter key, the program should print the
sum of the numbers and their average. Finally, the program should check
whether the integer value of the average is an even or odd or a prime value.

Asst. Prof. Dr. Anilkumar K.G 76

Strings and Text Files
• In this section, we explore strings and text files, which are useful data

structures for organizing and processing text.

• Much about computation is concerned with manipulating text.

• After understanding this section, you will be able to:
• Access individual characters in a string, Retrieve a substring from a string,

Search for a substring in a string, Convert a string representation of a number
from one base to another base, and Use string methods to manipulate strings.

• Open a text file for output and write strings or numbers to the file, and Open a
text file for input and read strings or numbers from the file.

• Use library functions to access and navigates a file system.

Asst. Prof. Dr. Anilkumar K.G 77

The Structure of Strings: len function
• A string is a data structure. A data structure is a compound unit that

consists of several smaller pieces of data.

• A string is a sequence of zero or more characters.

• A string’s length is the number of characters it contains. Python’s len
function returns length value (no. of characters) when it is passed a
string.

• Usage of len function: len(string)
length = len("Hello")

print("Length of \“Hello\" is", length)

Asst. Prof. Dr. Anilkumar K.G 78

Length of “Hello" is 5

The Structure of Strings: len function

• The position of a string’s characters are numbered from 0, on the left,
to the length of the string minus 1.

• See the position of characters in the string “Hi there!”:

• The string is an immutable data structure. This means that its internal
data elements, the characters can be accessed, but the structure itself
cannot be modified.

Asst. Prof. Dr. Anilkumar K.G 79

H I t h e r e !

0 1 2 3 4 5 6 7 8

The Subscript Operator
• The form of a subscript operator is the following:

 <a string>[<an integer expression>]

• For example:
name = "Alan Turing"

print("The first character in \"" + name + "\"is", name[0])

• Get a string from the user and print its last character.

Asst. Prof. Dr. Anilkumar K.G 80

The first character in "Alan Turing"is A

The Subscript Operator

• The following code shows how a count-controlled loop displays the
characters and their positions of a string:
name = "Alan Turing"

for char in range(len(name)):

 print(char, name[char])

Asst. Prof. Dr. Anilkumar K.G 81

0 A

1 l

2 a

3 n

4

5 T

6 u

7 r

8 i

9 n

10 g

Slicing for Substrings
• Here are some examples that show how slicing is used:

name = "Alan Turing"

print(name[-1])

print(name[-2])

print(name[-3])

print(name[0:])

print(name[0:1])

print(name[0:2])

print(name[-3:])

print(name[:len(name)])

Asst. Prof. Dr. Anilkumar K.G 82

g

n

i

Alan Turing

A

Al

ing

Alan Turing

Testing for a Substring with the in Operator
• Suppose you want to separate filenames with a .txt extension. A slice

would work for this application, by using Python’s in operator.

• The operator in returns True if the target string is somewhere in the
search string, or False otherwise.

• The following sample code shows how to separate filenames with .txt
from a list of various filenames:
fileList = ["anil.exe", "data.txt", "function.exe",

"name.txt", "class.txt"]

for file in fileList:

 if ".txt" in file:

 print(file)

Asst. Prof. Dr. Anilkumar K.G 83

data.txt

name.txt

class.txt

Exercises
1. Assume that the variable data refers to the string “myprogram.exe”.

Write the values of the following expressions:
1. data[2]
2. data[-2]
3. len(data)
4. data[0:8]

2. Assume that the variable myString refers to a string. Write a code
segment that uses a loop to print that characters of the string in reverse
order.

3. Assume that the variable myString refers to a string and the variable
reversedString refers to an empty string. Write a loop that adds the
characters from myString to reversedString in a reverse order.

Asst. Prof. Dr. Anilkumar K.G 84

Strings and Number System
• Converting Binary to Decimal

• We can code an algorithm for the conversion of a binary number to the equivalent
decimal number as a Python script.

• The input to the script is a string of bits, and its output is the integer that the
string represents.
• The algorithm uses a loop that accumulates the sum of a set of integers.
• The sum is initially 0.
• The exponent that corresponds to the position of the string’s leftmost bit is the length of the

bit string minus 1.
• The loop visits the digits in the string from the first to the last (left to right), also counting

from the largest exponent of 2 down to 0 as it goes.
• Each digit is converted to its integer value (1 or 0), multiplied by its positional value, and the

result is added to the ongoing total.
• A positional value is computed by using ** operator.

Asst. Prof. Dr. Anilkumar K.G 85

Strings and Number System
• Converting Binary to Decimal script:

binary = input("Enter a binary string: ")

copy = binary

decimal = 0

exponent = len(binary) - 1

for digit in binary:

 decimal += int(digit) * (2 ** exponent)

 exponent -= 1

print("The decimal equivalent of" + binary + “is", decimal)

Asst. Prof. Dr. Anilkumar K.G 86

Enter a binary string: 11111111

The decimal equivalent of 11111111 is 255

Strings and Number System
• Converting Decimal to Binary:

• This algorithm repeatedly divides the decimal number by 2.

• After each division, the remainder (either a 0 or a 1) is placed at the
beginning of a string of bits.

• The quotient becomes the next dividend in the process.

• The string of bits is initially empty, and the process continues while the
decimal number is greater than 0.

• The script expects a non-negative decimal integer as an input and prints the
equivalent bit string.

Asst. Prof. Dr. Anilkumar K.G 87

Strings and Number System
• Converting Decimal to Binary Script:

decimal = int(input("Enter a positive integer: "))

copy = decimal

if decimal == 0:

 print("The decimal equivalent of " + str(copy) + " is", 0)

else:

 binary = "" # empty string

 while decimal > 0:

 remainder = decimal % 2

 decimal //= 2

 binary = str(remainder) + binary

 print("The decimal equivalent of " + str(copy) + " is " + binary)

Asst. Prof. Dr. Anilkumar K.G 88

Enter a positive integer: 255

The decimal equivalent of 255 is 11111111

Converting Decimal to Binary until user press Enter key:
decimal = input("Enter a positive integer or just Enter to quit: ")

while True:

 if decimal == "0":

 print("Binary equivalent of 0 is 0.")

 elif decimal == "":

 break

 else:

 binary = ""

 dec = int(decimal)

 while dec > 0:

 remainder = dec % 2

 dec //= 2

 binary = str(remainder) + binary

 print("Binary equivalent of " + decimal + " is " + binary)

 binary = ""

 decimal = input("Enter a positive integer or just Enter to quit: ")

Asst. Prof. Dr. Anilkumar K.G 89

Enter a positive integer or just Enter to quit: 11

Binary equivalent of 11 is 1011

Enter a positive integer or just Enter to quit: 239

Binary equivalent of 239 is 11101111

Enter a positive integer or just Enter to quit:

String Methods
• Let’s start with counting words in a single sentence and finding the

average word length.

• This task requires locating the words in a string.

• For supporting this types of applications, Python includes a set of string
operations called methods.

Asst. Prof. Dr. Anilkumar K.G 90

String Methods: split
• Syntax of split method:

 <string_object>.<split>(<argument1, argument2,…., argumentn>)

• We use the string method split to obtain a list of the words contained in
an input string:
myString = "Have a nice day my dear!"

wordList = myString.split()

print("wordList = ", wordList)

print("There are ", len(wordList), “words in the list.")

Asst. Prof. Dr. Anilkumar K.G 91

wordList = ['Have', 'a', 'nice', 'day', 'my', 'dear!']

There are 6 words in the list.

String Methods: split

• We use the string method split to obtain a list of the words contained
in an input string. Then we print the length of the list, which equals
the number of words, and computes the average of the length of the
words in the list.

• The following section shows some useful string methods.

• You can view the complete list of string methods by entering dir(str)
or help(str) at a python shell prompt.

• Note that some arguments are enclosed in square brackets([]). These
indicate that the arguments are optional.

Asst. Prof. Dr. Anilkumar K.G 92

String Method What It Does

string.center(width) Returns a copy of string centered within the given number
of columns.

string.count(substring) Returns the number of non-overlapping occurrences of
substring in string.

string.endswith(substring) Returns True if string ends with substring or False
otherwise.

string.find(substring) Returns the lowest index in string where substring is found.

string.isalpha() Returns True if string contains only letters or False
otherwise.

string.split(sub) Returns a list of the words in string , using sub as the
delimiter string. If sub is not specified, any whitespace
string is a separator.

Asst. Prof. Dr. Anilkumar K.G 93

Asst. Prof. Dr. Anilkumar K.G 94

String Method What It Does

string.isdigit() Returns True if string contains only digits or False otherwise.

string.join(sequence) Returns a string that is the concatenation of the strings in the sequence.
The separator between elements is string.

string.lower() Returns a copy of string converted to lowercase.

string.upper() Returns a copy of string converted to uppercase.

string.replace(old, new, [count]) Returns a copy of string with all occurrences of substring old replaced by
new. If the optional argument count is given, only the first count
occurrences are replaced.

string.startswith(sub) Returns True if string starts with sub or False otherwise.

string.strip([aString]) Returns a copy of string with leading and trailing whitespace(tabs, spaces,
newlines) removed. If aString is given, remove characters in aString
instead.

String Methods in Action
• The usage of join method:

• myStr = input("Enter a string: ")

 words = myStr.split()

 newStr = "".join(words)

 print(newStr)

• myStr = input("Enter a string: ")

 words = myStr.split()

 newStr = "###".join(words)

 print(newStr)

Asst. Prof. Dr. Anilkumar K.G 95

Enter a string: Hello man, how do you do?

Helloman,howdoyoudo?

Enter a string: See you tomorrow!

See###you###tomorrow!

String Methods in Action
• The usage of join method:

• myStr = input("Enter a string: ")

 newStr = "".join(myStr.split())

 print(newStr)

• myStr = input("Enter a string: ")

 newStr = "$$".join(myStr.split())

 print(newStr)

 Asst. Prof. Dr. Anilkumar K.G 96

Enter a string: Hello man, how do you do?

Hello$$man,$$how$$do$$you$$do?

Enter a string: Hello man, how do you do?

Helloman,howdoyoudo?

String Methods in Action
• The usage of strip method:

myStr = input("Enter a string: ")

newStr = myStr.strip("bye")

print(newStr)

Asst. Prof. Dr. Anilkumar K.G 97

Enter a string: bye see you tomorrow bye

 see you tomorrow

String Methods in Action
• Example of string method center(width):

myStr = "Hello"

myStr2 = myStr.center(20)

print(myStr2)

• Example of string method endswith(sub):
myStr = "Hello How are you?"

Val = myStr.endswith("you?")

if Val == 1:

 newStr = myStr.replace("you", "AAAA")

else:

 newStr = myStr

print(newStr)

Asst. Prof. Dr. Anilkumar K.G 98

Hello How are AAAA?

String Methods in Action
• Example of string method isalpha():

myStr = "hhhhhxxhhssnnerkkdskd"

Val = myStr.isalpha()

if Val == True:

 print("The given string has only letters!")

• Example of string method isdigit():
myStr = "1234567898882200111"

Val = myStr.isdigit()

if Val == 1:

 print("The given string has only digits!")

 Asst. Prof. Dr. Anilkumar K.G 99

The given string has only letters!

The given string has only digits!

String Methods in Action
• Example of string method find(sub):

myStr = "See you guys tomorrow"

index = myStr.find("to")

print("The index of the substring \"to\" is ", index)

• Example of string methods upper() and lower():
myStr = "See You Guys"

strUpper = myStr.upper()

print("The string with only uppercase letters: " + strUpper)

strLower = myStr.lower()

print("The string with only lowercase letters: " + strLower)

Asst. Prof. Dr. Anilkumar K.G 100

The index of the substring "to" is 13

The string with only uppercase letters: SEE YOU GUYS

The string with only lowercase letters: see you guys

String Methods in Action

• Example of string method replace(old, new):
myStr = "See You Guys"

myStr = myStr.replace("Guys", "Man")

print(myStr)

• Example of string method replace(old, new, count):
myStr = "See You Guys. Where are you Guys? Hope you Guys are fine!"

myStr = myStr.replace("Guys", "Man", 2)

print(myStr)

Asst. Prof. Dr. Anilkumar K.G 101

See You Man

See You Man. Where are you Man? Hope you Guys are fine!

String Methods in Action
• Example of string method split(sub):

myStr = "myfile.txt, object.exe, value.word"

myStr = myStr.split(".")

print(myStr)

Asst. Prof. Dr. Anilkumar K.G 102

['myfile', 'txt, object', 'exe, value', 'word']

Exercises
• Get a string from user and count its vowel characters.

• Get a string from user and check whether any digit substring or not. If
there is any, then count it.

Asst. Prof. Dr. Anilkumar K.G 103

