
Fundamentals of Python
Part 2

(Reference: Fundamentals of Python, K.A
Lambert and B.L Juneja)

1 Asst. Prof. Dr. Anilkumar K.G

The list And dictionary
• From the previous topics, we know that a string is a data structure that

organizes test as a sequence of characters.

• In this section, we explores the use of two other common data
structures:
• The list, and

• The dictionary

• A list allows the programmer to manipulate a sequence of data values of
any types.

• A dictionary organizes data values by association with other data values
rather than by sequential position.

Asst. Prof. Dr. Anilkumar K.G 2

The list Data Structure
• A list is a sequence of data values called items or elements.

• An item can be of any type:
• A shopping list for the grocery store.
• A to-do list
• A guest list for a wedding
• A recipe list for cooking

• The logical structure of a list is similar to the structure of a string. Each of
the items in a list is ordered by position, like a character string.

• Each item in a list has a unique index that specifies its position.

• The index of the first item is 0 and the last item is length of the list
minus 1

Asst. Prof. Dr. Anilkumar K.G 3

list Literals and Basic Operators
• In Python, a list is written as a sequence of data values separated by

commas. The entire sequence is enclosed in square brackets ([and]).

• Here are the examples of such lists:

 [1961, 1987, 1977, 1956, 1963] # a list of integers

 [“Apple”, “Orange”, “Mango”] # a list of strings

 [] # an empty list

• You can also creating a list of lists. Here is one example of such a list:

 [[5, 9], [543, 341]] # list of lists

• It is interesting that when the Python interpreter evaluates a list literal,
each of the elements is evaluated as well.

Asst. Prof. Dr. Anilkumar K.G 4

list Literals and Basic Operators

• When an element is a number or a string, that literal is included in the
resulting list.

• When the element is variable or any other expression, its value is
included in the list as shown below:
import math

x = 2

print([x, math.sqrt(x)])

print([x + 1])

Asst. Prof. Dr. Anilkumar K.G 5

[2, 1.414]
[3]

list Literals and Basic Operators

• You can also build lists of integers using the range and list functions:
first = [1, 2, 3, 4, 5]

second = list(range(1, 6))

print(first)

print(second)

• The function len and the subscript operator [] work just as they do for
strings:
first = [1, 2, 3, 4, 5]

print(len(first)) 5

print(first[0]) 1

print(first[2:4]) [3, 4]

Asst. Prof. Dr. Anilkumar K.G 6

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

list Literals and Basic Operators
• Concatenation (+) and equality (==) also work as expected for lists:

first = [1, 2, 3, 4, 5]

second = first + [6, 7, 8]

print(second) [1, 2, 3, 4, 5, 6, 7, 8]

print(first == second) False

• The print function strips the quotation marks from a string, but it does
not alter the list form:
print(“12345”) 12345

print([1, 2, 3, 4, 5]) [1, 2, 3, 4, 5]

Asst. Prof. Dr. Anilkumar K.G 7

list Literals and Basic Operators
• You can use the in operator to detect the presence or absence of a

given element:
print(3 in [1, 2, 3, 4]) True

print(3 in [10, 22, 30]) False

• Similarly, by using in operator with index method of the list object,
we can extract the index of a list element:
myList = [10, 22, 34, 56, 81]

if 22 in myList:

 index = myList.index(22)

 print(index) 1

Asst. Prof. Dr. Anilkumar K.G 8

Some Operators and functions were used with list (L refers to a list)

Operator Function What it does

L[<an integer
expression>]

Subscript used to access an element at the given index
position.

L[<start>:<end>] Slice for a sub list. Returns a new list.

L + L List concatenation. Returns a new list.

print(L) Prints the literal representation of the list.

len(L) Returns the number of elements in a list

list (range(<upper>) Returns a list containing the integers in the range 0
through upper-1

==, !=, <, >, >=, <= Returns True if all the results are true, or False otherwise.

For<variable> in L: Iterate through the list, binding variable to each element.

<any value> in L Returns True if the value is in the list or False otherwise.
Asst. Prof. Dr. Anilkumar K.G 9

Replacing an Element in a list
• There is a huge difference between a string and a list:

• A string is immutable, its structure and contents cannot be changed.

• But a list is changeable, that is it is mutable; at any point in its life time,
elements can be inserted, removed, or replaced.
• The list itself maintains its identity, but its state – its length, and its contents can change.

• The subscript operator is used to replace an element at a given
position, as shown below:
myList = [10, 22, 34, 56, 81]

myList[1] = 11

print(myList) [10, 22, 34, 56, 81]

Asst. Prof. Dr. Anilkumar K.G 10

Replacing an Element in a list

• The following code shows how to replace each element of a list with
its square:
myList = [2, 3, 4, 5]

index = 0

while index < len(myList):

 myList[index] = myList[index] ** 2

 index += 1

print(myList) [4, 9, 16, 25]

Asst. Prof. Dr. Anilkumar K.G 11

Replacing an Element in a list
• Using the string method split to extract a list of the words in a

sentence. These words are then converted to uppercase letters within
the list:
sentence = "This sentence has five words"

wordList = sentence.split()

index = 0

while index < len(wordList):

 wordList[index] = wordList[index].upper()

 index += 1

print(wordList)

Asst. Prof. Dr. Anilkumar K.G 12

['THIS', 'SENTENCE', 'HAS', 'FIVE', 'WORDS']

Replacing an Element in a list
• The next example replaces the first three elements of a list with new

ones:
myNumber = list(range(6)) [0, 1, 2, 3, 4, 5]

myNumber[0:3] = [10, 11, 12]

print(myNumber) [10, 11, 12, 3, 4, 5]

Asst. Prof. Dr. Anilkumar K.G 13

list Methods for Inserting and Removing Elements (L refers to a list)

List Method What it does

L.append(element) Adds element to the end of list L.

L.extend(aList) Adds the elements of aList to the end of list L.

L.insert(index,
element)

Inserts element at index if index is less than the length of L.
Otherwise, insert element at the end of list L.

L.pop() Removes and returns the element at the end of List L.

L.pop(index) Removes and returns the element at index.

Asst. Prof. Dr. Anilkumar K.G 14

Examples of list Methods
• The method append expects just the new elements as an argument and

adds the new element to the end of the list:
myList = [12, 34, 56, 89]

myList.append(97)

print(myList) [12, 34, 56, 89, 97]

• The method insert expects an integer index and the new element as
argumnets:
myList = [2, 3, 5, 6, 7]

myList.insert(3, 87)

print(myList) [2, 3, 5, 87, 6, 7]

• The insert method inserts an element in the given index by pushing the old

element into the next index of the list.

Asst. Prof. Dr. Anilkumar K.G 15

Examples of list Methods

• The method extend performs a similar to that of append method, but it
adds the elements of list argument to the end of the list:
myList = [2, 3, 5, 7]

myList.extend([9, 11, 13])

print(myList) [2, 3, 5, 7, 9, 11, 13]

• Concatenation of lists by using extend method:
myList1 = [2, 3, 5, 7]

myList2 = [9, 11, 13]

myList1.extend(myList2)

print(myList1) [2, 3, 5, 7, 9, 11, 13]

Asst. Prof. Dr. Anilkumar K.G 16

Examples of list Methods
• The method pop is used to remove an element at a given position. If the

position is not specified, pop removes and returns the last element (not
in a list form). If position is specified, pop removes the element at that
position and returns it (not in a list form). in that case, the element that
followed the removed element are shifted one position to the left:
myList = [1, 2, 10, 11, 12, 13]

popedList = myList.pop()

print(popedList) 13

popedList = myList.pop(2)

print(popedList) 10

print(myList) [1, 2, 11, 12]

Asst. Prof. Dr. Anilkumar K.G 17

Searching a list Using in Operator
• After elements have been added to a list, a program can search for a given

element in the list.
• The in operator determines an element’s presence or absence with list index

method:
myList = [12, 33, 45, 67, 78, 99]

key = 67

if key in myList:

 index = myList.index(key)

else:

 index = -1

if index >= 0:

 print("The key is in the index", index, "of the list.")

else:
 print("The key is not found!")

Asst. Prof. Dr. Anilkumar K.G 18

The key is in index 3 of the list.

Searching a list Using sort Operator
• A list method sort sorts a list by arranging its elements in ascending order.

• The sort method is a mutable object method, because such a method
never returns a value to the caller (other methods such as insert, append,
and extend are mutable list methods):
myList = [12, 9, 85, 17, 58, 29]

myList.sort()

print(myList) [9, 12, 17, 29, 58, 85]

• Find smallest and largest numbers from a number list.

• Find the median of a given number list.

Asst. Prof. Dr. Anilkumar K.G 19

Mutator Methods and the Value None
• Mutable objects (such as lists) have some methods devoted entirely to

modifying the internal state of the object.

• Such methods are called mutators.
• Examples of mutator methods are: list, insert, append, extend, and sort.

• Because a change of state is all that is desired, a mutator method
usually returns no value to the caller.

• Python automatically returns the special value None even when a
method does not explicitly return a value.

Asst. Prof. Dr. Anilkumar K.G 20

Mutator Methods and the Value None

• Suppose you forget that sort never returns a value to the caller,
nevertheless you think that it builds and returns a new sorted list,
then see the return result of the following code:
aList = [8, 1, 3, 4, 0, 21, 13, 15]

aList = aList.sort()

print(aList) None

• How this happens?
 print(aList.sort()) None

 print(aList) [0, 1, 3, 4, 8, 13, 15, 21]

Asst. Prof. Dr. Anilkumar K.G 21

Aliasing and Side Effects
• We have learned that numbers and strings are immutable, that is we cannot

change their internal structure.

• However, because lists are mutable, you can replace, insert, or remove
elements from a list.

• The mutable property of lists leads to some interesting phenomena, as shown
below:
first = [8, 1, 3, 4, 21, 13, 15]

second = first

print(first) [8, 1, 3, 4, 21, 13, 15]

print(second) [8, 1, 3, 4, 21, 13, 15]

first[1] = 99

print(first) [8, 99, 3, 4, 21, 13, 15]

print(second) [8, 99, 3, 4, 21, 13, 15]

Asst. Prof. Dr. Anilkumar K.G 22

Aliasing and Side Effects

• In the above example, a single list object is created and modified
using the subscript operator.

• When the second element of list named first is replaced, the second
element of the list named second is also replaced.

• This type of change is known as a side effect.

• This happens because after the assignment second = first, the
variables first and second refer to the exact same list object.

• They are aliases for the same object. This phenomenon is known as
aliasing.

Asst. Prof. Dr. Anilkumar K.G 23

Aliasing and Side Effects
• Aliasing is not always a good thing when side effects are possible. Assignment creates

an alias to the same object rather than a reference to a copy of the object.

• To prevent aliasing, you can create a new object and copy the contents of the original
as shown below:
first = [11, 12, 34, 56, 78]

second = []

for element in first:

 second.append(element)

print(first) [11, 12, 34, 56, 78]

print(second) [11, 12, 34, 56, 78]

first[1] = 23

print(first) [11, 23, 34, 56, 78]

print(second) [11, 12, 34, 56, 78]

Asst. Prof. Dr. Anilkumar K.G 24

A Simpler way to copy a list by Slice operation

• A simper way to copy a list without aliasing is to use a slice over all of
the positions, as follows:
first = [11, 12, 34, 56, 78]

second = []

second = first[:] #slicing of list over all positions

print(first) [11, 12, 34, 56, 78]

print(second) [11, 12, 34, 56, 78]

first[0] = 9

print(first) [9, 12, 34, 56, 78]

print(second) [11, 12, 34, 56, 78]

Asst. Prof. Dr. Anilkumar K.G 25

Class Exercises

• Write a Python program which stores n integer marks (out of 100) in a
list which are by a user until the user just press Enter key.

• Get n integer elements from the user until press the Enter key and
show the median of the list.

• Get n integer marks (out of 100) from a user (until just press the Enter
key) and show its lowest, highest and average marks.

• From the above exercise, check whether how many students have
passed the exam based on the class average (students with marks
equal to or above the average marks will be passed the exam).

Asst. Prof. Dr. Anilkumar K.G 26

Equality: Object Identity and Structural
Equivalence
• The == operator returns True if the variables are aliases for the same

object.

• Unfortunately, the == operator also returns True if the contents of two
different objects are the same.

• The first relation is called object identity, whereas the second relation is
called structural equivalence.

• The == operator has no way of distinguishing between these two types
of relations.

Asst. Prof. Dr. Anilkumar K.G 27

Object Identity by is operator
• Python’s is operator can be used to test for object identity. It returns

True if the two operands refer to the exact same object, and it returns
False if the operands refer to distinct objects (even if they are
structurally equivalent). The following code shows the difference
between == and is operators:
first = [20, 30, 40]

second = first

third = [20, 30, 40]

print(first == second) True

print(first == third) True

print(first is second) True

print(first is third) False

Asst. Prof. Dr. Anilkumar K.G 28

Exercises
• Question 1 [15 points]: From a positive integer list (the elements of the list are collected from user until the Enter

key is pressed), find the even elements (if any) and convert them into their binary values. Otherwise, display
"There is no even element in the list".

• Question 2 [10 points]:Get a string from user and if any of its substring start with 'f' or 'F', then replace that word
from the string with "f-word" and display the resulted string. Otherwise, inform that the string has no "f-word".

Asst. Prof. Dr. Anilkumar K.G 29

Enter a positive integer or press Enter to stop: 3
Enter a positive integer or press Enter to stop: 8
Enter a positive integer or press Enter to stop: 24
Enter a positive integer or press Enter to stop: 7
Enter a positive integer or press Enter to stop:
The positive integer list is [3, 8, 24, 7]
The binary equivalent of 8 is 1000
The binary equivalent of 24 is 11000

Enter a positive integer or press Enter to stop: 1
Enter a positive integer or press Enter to stop: 3
Enter a positive integer or press Enter to stop: 5
Enter a positive integer or press Enter to stop:
The positive integer list is [1, 3, 5]
The list has no even integer element!

Enter a string with words: Have a funny day, fine man!
Have a f-word day, f-word man!

Enter a string with words: Hello, see you later!
There is no f-word in the string!

Detecting Duplicate Elements from a list

• The following code shows how to detect duplicate elements from a
list:
mylist = [10, 20, 10, 30, 40, 50]

val = False

for i in range(len(mylist)):

 for j in range(i + 1,len(mylist)):

 if mylist[i] == mylist[j]:

 val = True

print(val) True

Asst. Prof. Dr. Anilkumar K.G 30

Removing Duplicate Elements from a list
• Removing duplicate elements from a list by comparing the elements

of the original list with another two lists as shown below:
myList = [1, 2, 1, 2, 6, 5, 5, 3, 3, 4, 4, 5, 6, 1]

output = []

seen = []

for x in myList:

 if x not in seen:

 output.append(x)

 seen.append(x)

print(output) [1, 2, 6, 5, 3, 4]

print(seen) [1, 2, 6, 5, 3, 4]

Asst. Prof. Dr. Anilkumar K.G 31

Set in Python
• A set is an unordered collection of items (elements). Every element in a

set should be unique (has no duplicate elements) and must be immutable.

• However, the set itself in mutable (we can add or remove items from it).

• A set in Python is created by placing all the elements inside curly brace {},
separated by comma or by using the python function set().

• A set can have any number of items and they may be of different types
(such as integer, float, tuple, string, etc):
mySet = {1, 2, 3, 4}

print(mySet) {1, 2, 3, 4}

Asst. Prof. Dr. Anilkumar K.G 32

Using set() Function with add Method

• In Python we can generate a set of elements by using set() function
and add method:
myset = set()

for x in range(8):

 myset.add(x)

print(myset) {0, 1, 2, 3, 4, 5, 6, 7}

• Next we can remove or eliminate duplicate elements from a list by
using set() function and set method add:
• That is, use a for loop and check each element of the list in a set. If the set

has not that element, then append it to a new list.
• The code is shown in the next slide.

Asst. Prof. Dr. Anilkumar K.G 33

Removing Duplicate Elements from a list
• The following code shows the removal of duplicates from a list:

myList = [1, 2, 1, 2, 6, 5, 5, 3, 3, 4, 4, 5, 6, 1]

output = []

seen = set()

for x in myList:

 if x not in seen:

 output.append(x)

 seen.add(x)

print(output) [1, 2, 6, 5, 3, 4]

print(seen) {1, 2, 3, 4, 5, 6}

Asst. Prof. Dr. Anilkumar K.G 34

Removing Duplicate Elements from a list

• Another easy way to eliminate duplicate elements from a list is just
convert the list into a set:
mylist = [1, 1, 2, 3, 2, 3, 4, 5, 5]

mylist = list(set(mylist))

print(mylist) [1, 2, 3, 4, 5]

Asst. Prof. Dr. Anilkumar K.G 35

Tuples
• A tuple is a type of sequence that resembles a list, except that, unlike

a list, a tuple is immutable. The following code shows the usage of
tuple in Python:
fruits = ("apple", "banana")

print(fruits) ('apple', 'banana')

nonVeg = ("fish", "chicken")

print(nonVeg) ('fish', 'chicken')

food = fruits + nonVeg

print(food) ('apple', 'banana', 'fish', 'chicken')

veg = ["beans", "celery"]

veg = tuple(veg)

print(veg) ('beans', 'celery')

Asst. Prof. Dr. Anilkumar K.G 36

Design Programs with Functions
• After completing this section, you will be able to:

• Explain why functions are useful in structuring code in a program.

• Employ top-down design to assign tasks to functions.

• Define a recursive function.

• Define a function with required and optimal parameters.

• Strictly speaking functions are not necessary; it is possible to
construct any algorithm using only Python’s built-in operators and
control statements.

• However, in any significant program, the resulting code would be
extremely complex, difficult to verify, and almost impossible to
maintain.

Asst. Prof. Dr. Anilkumar K.G 37

Functions as Abstraction Mechanisms

• An abstraction is a mechanism that hides complex details of a program
and thus allows a person to view many things as just one thing.

• Likewise, effective designers must invent useful abstractions to control
code complexity.

• The first way that functions serve as abstraction mechanisms is by
eliminating redundant, or repetitious code.

• Let’s look at a function named sum, which returns the sum of two
integer values to the caller section of the program.

Asst. Prof. Dr. Anilkumar K.G 38

A Simple Function that Returns the sum
• Function definition in Python has the following syntax:

• Here is the definition of the function sum, that returns the sum of
two integers:
def sum(a, b):

 return a + b

val1 = int(input("Enter the first integer: "))

val2 = int(input("Enter the second integer: "))

print("The sum is", sum(val1, val2))

Asst. Prof. Dr. Anilkumar K.G 39

def function_name(argument1, argument2,…., argumentn):
 function description
 return value

A Simple Function that Returns the sum
• A function named sum, which returns the sum of the numbers within a

given range of numbers:
def sum(lower, upper):

 sum = 0

 for x in range(lower, upper + 1):

 sum += x

 return sum

L = int(input("Enter the first integer: "))

U = int(input("Enter the second integer: "))

print("The sum from",val1, “to", val2, "is", sum(L,U))

Asst. Prof. Dr. Anilkumar K.G 40

Enter the first integer: 10

Enter the second integer: 100

The sum including 10 and 100 is 5005

Defining Simple Functions
• Most of the functions used thus far expect one or more arguments and

return a value.

• Let’s define a function that expects a number as an argument and returns
the square of that number:
def square(x):

 return x * x

value = int(input("Enter a positive integer: "))

print(square(value))

Asst. Prof. Dr. Anilkumar K.G 41

Defining Simple Functions
• A function named average that returns the average value of an integer list:

def average(myList):

 sum = 0

 for x in myList:

 sum += x

 return sum/len(myList)

myList = []

while True:

 val = input("Enter list elements or just press Enter: ")

 if (val == ""):

 break

 myList.append(int(val))

avg = average(myList)

print("The average of list is", avg)

Asst. Prof. Dr. Anilkumar K.G 42

Enter list elements or press Enter: 2

Enter list elements or press Enter: 2

Enter list elements or press Enter: 2

Enter list elements or press Enter:

The average of list is 2.0

Defining Simple Functions
• A function named average that returns the average value of a float list:

def average(myList):

 sum = 0.0

 for x in myList:

 sum += x

 return sum/len(myList)

myList = []

while True:

 val = input("Enter list elements or press Enter: ")

 if (val == ""):

 break

 myList.append(float(val))

avg = average(myList)

print("The average of list is %0.2f"% avg)

Asst. Prof. Dr. Anilkumar K.G 43

Enter list elements or press Enter: 22.3

Enter list elements or press Enter: 44.5

Enter list elements or press Enter: 56.7

Enter list elements or press Enter:

The average of list is 41.17

A Function that not Returns its Value
• Here is the code sample of a Python function that not returns its value to the caller:

def average(val):

 sum = 0

 for x in val:

 sum += x

 print("The average of list elements is", sum/len(val))

myList = []

while True:

 data = input("Enter elements of a list or press just Enter: ")

 if data == "":

 break

 myList.append(int(data))

print("")

average(myList)

Asst. Prof. Dr. Anilkumar K.G 44

Enter elements of a list or press just Enter: 10

Enter elements of a list or press just Enter: 10

Enter elements of a list or press just Enter: 10

Enter elements of a list or press just Enter:

The average of list elements is 10.0

Boolean Functions
• A Boolean function usually tests its argument for the presence or absence of some

property. The function returns True if the property is present, or False otherwise. The
following function shows the use of the Boolean function odd, which test an integer
number to see whether it is odd:

def odd(number):

 if number % 2 == 1:

 return True

 else:

 return False

number = int(input("Input a positive integer: "))

val = odd(number)

if val:

 print(number,"is an odd number.")

else:

 print(number, " is not an odd number.")

Asst. Prof. Dr. Anilkumar K.G 45

Input a positive integer: 21

21 is an odd number.

Input a positive integer: 18

18 is not an odd number.

Design with Recursive Functions
• A recursive function is a function that calls itself.

• To prevent a function from repeating itself indefinitely, it must contain at least on
selection statement.

• This statement examines a condition called a base case (the upper value, see the
below code) to determine whether to stop or to continue with another recursive
step.

• Let us examine how to convert an iterative algorithm to a recursive function.

• Here is a definition of a function displayRange that points the numbers from a lower
bound to an upper bound:

def displayRange(lower, upper):

 while(lower <= upper):

 print(lower)

 lower += 1

Asst. Prof. Dr. Anilkumar K.G 46

Design with Recursive Functions

def displayRange(lower, upper):

 while(lower <= upper):

 print(lower)

 lower += 1

• How would we go about converting this function to a recursive one?
• The equivalent recursive function replaces the loop with a selection statement,

and the assignment statement is replaced with a recursive call of the function:

def displayRange(lower, upper):

 if lower <= upper:

 print(lower)

 displayRange(lower + 1, upper)

 Asst. Prof. Dr. Anilkumar K.G 47

Design with Recursive Functions
• Although the syntax and design of the two functions are different, the

same algorithmic process is executed.

• Each call of the recursive function visits the next number in the sequence,
just as the loop does in the iterative version of the function.

• Most recursive functions expect at least one assignment. This data value is
used to test for the base case that ends the recursive process, and also is
modified in some way before each recursive step.

• The modification of the data value should produce a new data value that
allows the function to reach the base case eventually.

Asst. Prof. Dr. Anilkumar K.G 48

Design with Recursive Functions
• Here is a recursive function which prints repeated value of a string based

on the given integer number:

def prinrMany(strVal, intNumber):

 if intNumber > 0:

 print(strVal)

 prinrMany(strVal, intNumber - 1)

myStr = input("Input a string: ")

intNum = int(input("Enter the number: "))

prinrMany(myStr, intNum)

Asst. Prof. Dr. Anilkumar K.G 49

Input a string: fine

Enter the number: 3

fine

fine

fine

Recursive Function Returns Value
• Recursive function that returns a Value. The following sum function computes and

returns the sum of the numbers between the two values.
• In the recursive case, sum returns 0 if lower exceeds upper (the base case).

Otherwise, the function adds lower to the sum of lower + 1, and upper and returns
the result:
def sum(lower, upper):

 if lower > upper:

 return 0

 else:

 return lower + sum(lower +1, upper)

low = int(input("Enter the lower value: "))

upp = int(input("Enter the upper value: "))

sum = sum(low, upp)

print("The sum is ", sum)

 Asst. Prof. Dr. Anilkumar K.G 50

Enter the lower value: 1

Enter the upper value: 5

The sum is 15

Construct Recursive Function from Recursive
Definition
• A recursive function consists of equations that state what a value is

for one or more base cases, and one or more recursive cases.

• For example, the Fibonacci sequence is a series of values with a
recursive definition.

• The first and second numbers in the Fibonacci sequence are 1.

• Thereafter, each number in the sequence is the sum of its two
predecessors, as follows:

 1 1 2 3 5 8 13 21……………

Asst. Prof. Dr. Anilkumar K.G 51

Construct Recursive Function from Recursive
Definition

• A recursive definition of the nth Fibonacci number is the following:

 Fib(n) = 1, when n = 1, or n = 2

 Fib(n) = Fib(n  1) + Fib(n  2) for all n > 2

• Based on this we can construct a recursive function that computes and
returns the nth Fibonacci number:
 def Fib(n):

 if n < 3:

 return 1

 else:

 return Fib(n - 1) + Fib(n - 2)

Asst. Prof. Dr. Anilkumar K.G 52

Construct Recursive Function from Recursive
Definition

• The factorial of a positive integer n, fact(n), is defined recursively as follows:
fact(n) = 1, when n = 1
fact(n) = n * fact(n – 1), otherwise

 Define a recursive function fact that returns the factorial of a given positive integer.

• Explain what happens when the following recursive function is called with the value 4
as an argument:

 def example(n):

 if n > 0:

 print(n)

 example(n – 1)

Asst. Prof. Dr. Anilkumar K.G 53

Construct Recursive Function from Recursive
Definition
• Explain what happens when the following recursive function is called

with the value 4 as an argument:

def example(n):

 if n > 0:

 print(n)

 example(n)

 else:

 example(n – 1)

Asst. Prof. Dr. Anilkumar K.G 54

Higher-order Functions – the map function
• The map function:

• suppose we have a list named words that contains strings that
represent integers. We want to replace each string with the
corresponding integer value, the map function easily accomplishes
this:
words = ["20", "99", "231"]

words = list(map(int, words))

print(words) [20, 99, 231]

• The map function supports only a sequence data format such as a
list, a tuple, or a string.

Asst. Prof. Dr. Anilkumar K.G 55

Higher-order Functions – the filter function
• Filtering:

• A second type of higher-order function is called a filter function. In this case, a
predicate function is applied to each value in a list. If the predicate is True, the value
passes the test, and is added to a filter object(similar to a map object, in the
previous section). Otherwise, the value is dropped from consideration. Here is the
Python’s filer function that is used to produce a list of odd numbers in another list:

def odd(n):

 return n % 2 == 1

oddList = list(filter(odd, range(10)))

print(oddList) [1, 3, 5, 7, 9]

Asst. Prof. Dr. Anilkumar K.G 56

Dictionaries
• We have seen that the lists organize their elements by position. This mode

of organization is useful when you want to locate the first element, the last
element, or visit each element in a sequence.

• However, in some situations, the position of a datum in a structure is
irrelevant. For example, you might need to lookup Mr. John’s phone number
but don’t care where that number is in the phonebook.

• A dictionary organizes information by association, not position. For
example, when you use a dictionary to lookup the definition of “mammal”,
you don’t start at page1; instead, you directly focus the words beginning
with ‘M’.

• In Computer Science, data structures organized by association are called
tables or association lists.

 Asst. Prof. Dr. Anilkumar K.G 57

Exercise
• Using map and filter functions; get a set of list elements (string

elements which are converted into integers by using the map
function) and show a resulted list with only odd integer elements (by
using the filter function).

Asst. Prof. Dr. Anilkumar K.G 58

Dictionary Literals
• In Python, a dictionary associates a set of keys with data values.

• A Python dictionary is written as a sequence of key/value pair separated
by commas.

• These pairs are called entries. The entire sequence of entries is enclosed
in curly braces({ and }).

• A colon (‘:’) separates a key and its value. Some example dictionaries:
• phoneBook = {‘John’: ‘476-1234’, ‘Lily’: ‘564-3216’, ‘Tom’: ‘765-2398’}

• ‘john’, ‘Lily’, ‘Tom’ are keys and ‘476-1234’, ‘564-3216’, and ‘765-2398’ are values.

• personalData = {‘Name’:’Lily’, ‘Age’:30, ‘Occupation’: ‘Teacher’}
• ‘Name’, ‘Age’, and ‘Occupation’ are keys and ‘Lily’, 30, and ‘Teacher’ are values.

• emptyDictionary = {}

Asst. Prof. Dr. Anilkumar K.G 59

Adding Keys and Replacing values
• Add a new key/value pair to a dictionary by using the subscript operator []:

• Syntax: <a dictionary>[<a key>] = < a value>

• The following code segments creates an empty dictionary and adds two new
entries:
personalInfo = {} empty dictionary

personalInfo["Name"] = "Sandy“ value

personalInfo["Age"] = 30 key

personalInfo[“Job"] = "Teacher"

print(personalInfo)

 {'Name': 'Sandy', 'Age': 30, 'Job': 'Teacher'}

Asst. Prof. Dr. Anilkumar K.G 60

Adding Keys and Replacing values

• The subscript is also used to replace a value at an existing key, as follows:
personalInfo = {}

personalInfo["Name"] = "Sandy"

personalInfo["Age"] = 30

personalInfo["Job"] = "Teacher"

print(personalInfo) {'Name‘:'Sandy‘,'Age':30,'Job':'Teacher'}

personalInfo["Job"] = "Manager"

print(personalInfo) {'Name‘:'Sandy‘,'Age':30,'Job':’Manager‘}

Asst. Prof. Dr. Anilkumar K.G 61

Accessing Values from a dictionary- get method
• You can also use the subscript to obtain the value associated with a key in a dictionary. If

the key is not present in the dictionary, Python raises an error:
personalInfo = {'Name':'Sandy', 'Age':30, 'Job':'Teacher'}

print(personalInfo["Job"]) Teacher

print(personalInfo["Hobby"]) KeyError: 'Hobby'

• If the existence of a key is uncertain, the method get can be used to test availability of its
value. The method get expects two arguments, a possible key and a default value.

• If the key is in the dictionary, the associated value is returned. If the key is absent, the
default value None will be returned:

 personalInfo = {'Name': 'Sandy', 'Age': 30, 'Job': 'Teacher'}

 print(personalInfo.get("Hobby")) None

 print(personalInfo.get("Hobby“, None)) None

 print(personalInfo.get("Hobby“, “Hello”)) Hello

Asst. Prof. Dr. Anilkumar K.G 62

Removing Keys from a Dictionary
• To delete an entry from a dictionary, one can remove its key using the

method pop.

• This method expects a key and an optional default value as arguments.

• If the key is in the dictionary, it is removed, and its associated value is
returned.

• Otherwise, the default value is returned.

• If pop method is used with just one argument, and this key absent from
the dictionary, Python raises an error.

Asst. Prof. Dr. Anilkumar K.G 63

Removing Keys from a Dictionary
• The following code sample attempts to remove two keys from a dictionary and

prints the values returned:
personalInfo = {'Name':'Sandy', 'Age':30, 'Job':'Teacher'}

print(personalInfo.pop("Hobby", None)) None

print(personalInfo.pop("Job")) Teacher

print(personalInfo) {'Name': 'Sandy', 'Age': 30}

Asst. Prof. Dr. Anilkumar K.G 64

Traversing a Dictionary
• When a for loop is used with a dictionary, the loop’s variable is bound to each key in an

unspecified order:
info = {'Name': 'Sandy', 'Age': 30, 'Job': ‘Clerk'}

for key in info:

 print(key, ":", info[key])

• Alternatively, we can use the dictionary method items() to access a list of the dictionary’s
entries:
info = {'Name': ‘Lily', 'Age': 30, 'Job': ‘Clerk'}

print(info.items()) dict_items([('Name‘,‘Lily'),('Age‘,30),('Job',‘Clerk')])

print(list(info.items())) [('Name‘,'Sandy'),('Age‘,30),('Job‘,‘Clerk')]

print(set(info.items())) {('Name‘,'Sandy'),('Age‘,30),('Job‘,‘Clerk')}

Asst. Prof. Dr. Anilkumar K.G 65

Name : Sandy

Age : 30

Job : Clerk

Traversing a Dictionary
• Note that the entries of the dictionary are represented as tuples within the

list. A tuple of variables can then access the key and value of each entry in this
list within a for loop (key in an unspecified order):
info = {'Name': 'Sandy', 'Age': 30, 'Job': 'Teacher'}

for (key, value) in info.items():

 print(key, ”:”, value)

• On each pass through the for loop, the variables key and value within the
tuple are assigned the key and value of the current entry in the list.

Asst. Prof. Dr. Anilkumar K.G 66

Job : Teacher

Name : Sandy

Age : 30

Traversing a Dictionary
• If a special ordering of the keys is needed, then we can obtain a list of keys

using the keys method and process this list to rearrange the keys:
info = {'Name': 'Sandy', 'Age': 30, 'Job': 'Teacher'}

theKeys = list(info.keys())

print(theKeys) ['Job', 'Name', 'Age']

theKeys.sort() Sorting the keys by sort() method

print(theKeys) ['Age', 'Job', 'Name']

for key in theKeys:

 print(key,”:”, info[key])

Asst. Prof. Dr. Anilkumar K.G 67

Age: 30

Job: Teacher

Name: Sandy

DICTIONARY
OPERATION

WHAT IT DOES (where ‘d’ refers to a Dictionary)

len(d) Returns the number of entries in d

aDict[key] Used for inserting a new key, replacing a value, or obtaining a value at an existing key.

d. get(key [, default]) Returns the value if the key exists or returns the default if the key does not exist.
Raises an error if the default is omitted and the key does not exist.

d. pop(key [, default]) Removes the key and returns the value if the key exists or returns the default if the
key does not exist. Raises an error if the default is omitted and the key does not exist.

list(d. keys()) Returns a list of the keys.

list(d. values()) Returns a list of the values.

list(d. items()) Returns a list of tuples containing the keys and values for each entry.

d.has_key(key) Returns True if the key exists or False otherwise.

d.clear() Remove all the keys.

For key in d: key is bound to each key in d in an unspecified order.

max(d.values()) Returns the maximum of the values (in numbers).
Asst. Prof. Dr. Anilkumar K.G

68

Dictionary acts as a Lookup Table
• Lookup table dictionary: Here is the definition of the lookup table

dictionary which is required for hexadecimal to binary conversion. The
lookup table dictionary is given below:

hexToBinaryTable = {‘0’:’0000’, ‘1’:’0001’, ‘2’:’0010’,

 ‘3’:’0011’, ‘4’:’0100’, ‘5’:’0101’,

 ‘6’:’0110’, ‘7’:’0111’, ‘8’:’1000’,

 ‘9’:’1001’, ‘A’:’1010’, ‘B’:’1011’,

 ‘C’:’1100’, ‘D’:’1101’, ‘E’:’1110’,

 ‘F’:’1111’}

Asst. Prof. Dr. Anilkumar K.G 69

Dictionary acts as a Lookup Table
def hexToBinary(number, table):

 binary = ""

 for digits in number:

 binary += table[digits]

 return binary

hexa = input("Enter an Hexadecimal number: ")

hexa = hexa.upper()

binaryVal = hexToBinary(hexa, hexToBinaryTable)

print("The binary of 0x" + hexa + " is " + binaryVal)

 In the above code, show a “wrong input” display, if the input string from the user
is wrong (means the input is not an exact hexadecimal value)

Asst. Prof. Dr. Anilkumar K.G 70

Enter an Hexadecimal number: abf01

The binary of 0xABF01 is 10101011111100000001

Dictionary Application: Finding mode Value
• The mode of a list of values is the value that occurs most frequently.

• The following script shows how to find frequency of elements in a string list using a
dictionary:

myList = ["HELLO", "BYE", "BYE", "SEE", "YOU", "TAKE", "CARE", "BYE"]

myDictionary = {}

for words in myList:

 value = myDictionary.get(words, None)

 if value == None:

 myDictionary[words] = 1

 else:

 myDictionary[words] = value + 1

print(myDictionary)

Asst. Prof. Dr. Anilkumar K.G 71

{'BYE': 3, 'TAKE': 1, 'SEE': 1, 'HELLO': 1, 'YOU': 1, 'CARE': 1}

Dictionary Application: Finding mode Value
• The dictionary associates each unique word with the number of

occurrence (frequency) in the list (‘myList’), and the script uses the
function max, to return the maximum integer value contained in a
dictionary. Here is the code for the script:

 maxVal = max(myDictionary.values())
print(maxVal)

for key in myDictionary:

 if myDictionary[key] == maxVal:

 print("The mode is \"" + key +"\"")

Asst. Prof. Dr. Anilkumar K.G 72

The mode is "BYE"

Exercises
• Assume that the variable data refers to the dictionary {“b”:20, “a”:35}. Write the values

of the following expressions:
• data[“a”]

• data.get(“c”, None)

• len(data)

• data.keys()

• data.values()

• data.pop(“b”)

• data

• Find the mode value from a given text file (.txt file).

Asst. Prof. Dr. Anilkumar K.G 73

Text Files
• A text file is a software object that stores data on a permanent medium such

as a disk.

• Using text editor such as Notepad, you can create, view, and save data in a
text file.

• The data in a text file can be viewed as characters, words, numbers, or lines
of text, depending on the text file’s format.

• In Python, all data output to or input from a text file must be strings.

• Thus, numbers must be converted to strings before output, and these
strings must be converted back to numbers after input.

Asst. Prof. Dr. Anilkumar K.G 74

Writing Text to a File
• Data can be output (write) to a text file using a file object.

• Python’s open function, which expects a fileName, and file-mode as
argument.

• The file-mode is r for input files and w for output files.

• Thus the following code opens a file object on a file named myfile.txt for
output:

 f = open (“myfile.txt”, ‘w’)

• where f is the file object variable.

• If the file does not exist, it is created with the given file name.

• If the file already exists, Python opens it. When data are written to the file, and the
file is closed, any data previously existing in the file are erased.

Asst. Prof. Dr. Anilkumar K.G 75

Writing Text to a File
• String data are written (output) to a file using the method write with the

file object:

 f.write(string)

• If you want the output text to end with a newline, you must include the
escape character ‘\n’ in the string:

 f.write(“First line \n second line\n……\n)

• When all of the outputs are finished, the file should be closed using the
method close, as follows:

 f.close()

Asst. Prof. Dr. Anilkumar K.G 76

Writing numbers to a File
• The file method write expects a string as an argument.

• Therefore, other types of data, such as integers or floating-point numbers, must first be
converted to strings before being written to an output file.

• The resulting strings are then written to a file with a space or a newline as a separator
character. The next code segment illustrates the output of integers to a text file:

import random

f = open("integers.txt", 'w')

for count in range(500):

 number = random.randint(1, 500)

 f.write(str(number) + "\n")

f.close()

Asst. Prof. Dr. Anilkumar K.G 77

Reading Text From a File
• Open a file for input in a manner similar to opening a file for output.

• The only thing that changes is the mode argument, which is ‘r’.

• Here is the code for opening myfile.txt for input:

 f = open (“myfile.txt”, ‘r’)

• The simplest way to use the file method read to input the entire contents of the file
as a single string.

• If the file contains multiple line of text, the newline characters will be embedded in
the string. The following code shows how to use the method read:

f = open("integers.txt", 'r')

text = f.read()

print(text)

 Asst. Prof. Dr. Anilkumar K.G 78

Reading Text From a File
• After input is finished, another call to read would return an empty string,

to indicate that the end of the file has been reached.

• To repeat an input, the file must be re-opened.

• It is not necessary to close the file after a read operation.

• Alternatively, an application can read and process the text from a file by
using a for loop:
f = open("integers.txt", 'r')

for line in f:

 print(line)

• This will print each line of text with an extra newline.

Asst. Prof. Dr. Anilkumar K.G 79

Reading Text From a File
• The print the read line with extra newline (in the previous case) can be

solved with readline method.

• The readline method consumes a line of input and returns a string,
including a newline. If readline encounters the end-of-file(EOF), it returns
the empty string. The following code shows the usage of readline:
f = open("integers.txt", 'r')

while True:

 line = f.readline()

 if line == "":

 break

print(line)

Asst. Prof. Dr. Anilkumar K.G 80

Reading Numbers from a File
• When reading data from a file, another important consideration is the

format of the data item in the file.

• Here use the string method strip to remove the newline. The sample code
with strip method is shown below:
f = open("integers.txt", 'r')

sum = 0

for line in f:

 line = line.strip() # removes extra new line

 number = int(line)

 sum += number

print("The sum is", sum)

Asst. Prof. Dr. Anilkumar K.G 81

Reading Numbers from a File
• Obtaining numbers from a text file in which they are separated by spaces,

you can use the string method split to obtain a list of strings representing
integers. The following code shows the usage of split method:

f = open("integers.txt", 'r')

sum = 0

for line in f:

 wordList = line.split() # removes extra space

 for word in wordList:

 number = int(word)

 sum += number

print("The sum is", sum)

Asst. Prof. Dr. Anilkumar K.G 82

Some File Operations
Method What it does

open(fileName, mode) Opens a file with the given name and returns a file
object. The mode ‘r’, ‘w’, ‘rw’ or ‘a’. Where ‘rw’ means
read/write, and ‘a’ means append.

f.close() Closes the output file. But not needed for input files.

f.write(string) Outputs (writes) a string to file.

f.read() Inputs(reads) the contents of a file and returns them as
a single string.

f.Readline() Inputs a line of text and returns it as a string, including
the newline. Returns an empty string if the EOF is
reached.

Asst. Prof. Dr. Anilkumar K.G 83

