ASSUMPTION UNIVERSITY
VINCENT MARY SCHOOL OF SCIENCE & TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE
COURSE OUTLINE

	COURSE ORGANIZATION

	Course Title:
	Computing Systems (SC5212)

	Course Status:
	Non-credit

	Pre-requisite:
	None

	Semester:
	1/2019

	Classroom, Date & Timing:
	Monday 18:30-21:30 at A82

	Description:
	Fundamental knowledge on computer architecture and operating systems; modern design and technology, and design rational; processor architectures, forms of parallelism, instruction set architecture, memory systems, multiprocessors, process synchronization, distributed computation, deadlock management.

	Marks Allocation:
	Term Project (individual)*
Class work (Quizzes & Assignments)
Midterm Examination
Final Examination (Comprehensive)
		15 %
 25 %
	20 %
	40 %

	COURSE INSTRUCTOR

	Instructor:
	Asst. Prof. Dr. Anilkumar K Gopalakrishnan
	
	
	

	Office:
	E64 (HuaMak), VMS0508(Suvarnabhumi)

	Email:
	anil@scitech.au.edu
	
	
	

	Course materials:
	portal.scitech.au.edu/anilkumar
	
	
	

	Mobile Phone:
	0891351711
	
	
	

	COURSE RESOURCES

	Textbook1:
	· Digital Design and Computer Architecture, 2nd Edition, David M.H and Sarah L.H, Morgan Kaufmann, Elsevier, 2013 (ISBN: 978-0-12-394424-5)

	Textbook2:
	· Computer Architecture: A Quantitative Approach 4th Edition, David A. Patterson and John L. Hennessy, Morgan Kaufmann Publishers, 2005. (ISBN: 0-12-370490-1)

	Textbook3:
	· Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Wiley, 2013 (ISBN: 978-1-118-09375-7)

	Reference(s):
	· Computer Architecture and Implementation, Harvey G. Cragon, Cambridge University Press, 2000 (ISBN: 0-52-165168-9)
· Operating Systems : Internals and Design Principles 8th Edition, William Stallings, Prentice Hall, 2015 (ISBN: 978-0-133-80591-8)
· Advanced Concept in Operating Systems, by Mukesh Singhal and Niranjan Shivaratri, McGraw-Hill, 1994.

	COURSE POLICIES:

	1. Students are required to have 80% of class attendance to be eligible for the final examination.
2. Examination contents will be based on assigned lecture materials and class assignments.

	COURSE EXAMINATIONS

	Midterm:
	Date:
	
	Time:
	12:00-14:00 (2 hrs)

	
	
	

	Final:
	Date:
	
	Time:
	13:00-16:00 (3 hrs)

	
	
	

	Week
	Topic

	Week 1,2
	Introduction-Number System & Logic Gates

	Week 3, 4
	Combinational and Sequential Logics

	Week 5
	Arithmetic Circuits

	Week 6
	Operating System Overview

	Week 7
	Process Synchronization and Thread management

	Week 8
	Distributed Computation

	Week 9
	Deadlock Management and CPU scheduling

	Week 10
	Instruction Set Architecture

	Week 11
	Memory Management

	Week 12
	Pipeline Architecture

	Week 13
	Multiprocessor Systems

	Week 14
	Virtual Memory

	Week 15
	Revision

	INSTRUCTION SET ARCHITECTURE (ISA) PROJECT:

	Write a simple CPU Instruction Set Architecture (ISA) simulation program for a selected CPU size (either 16-bit, 24-bit or 32-bit) using any programming language. The ISA design should be included the user defined instruction sets, control registers, main memory indication, CPI (clock per instruction), etc.

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Requirements:
1. The simulation should support at least 16-bit integer representation.
1. The ISA should consist of at least 8 general purpose registers.
1. The program should be able to handle (at least) op-codes such as mov (move), add (addition), sub (subtraction), mul (multiplication), div (division), etc.

Example ISA
1. User will be allowed to input the instructions in the following way:
Assume that a 24-bit ISA with 16-bit integer data representation and 16-bit 8 GPRs (say r0,…..r7). Select any two registers from the given GPR list as a multiplication register for multiplication and a remainder register for division. An example instruction set with their decoded and encoded forms are shown below (where r0 is a multiplication register and r7 is a remainder register):

 Decoded form Instruction meaning Encoded form
 mov r1 3 r1 3 [0001001 0000 0000 0000 0011]
 add r1 3 r1 r1 + 3 ------
 mov r2 r1 r2 r1 ------
 mul r2 -1 r0: r2 r2 * -1 (total 32-bit result) -------
	 mov r3 r2 r3 r2 -------
	 div r3 2 r7:r3 r3 / 2 ------
	 end 0 0

Values of registers after the execution of the instruction set
During the execution of the above code sequence, the values of registers would be varied in the following way:
 r1 = 3 [0000 0000 0000 0011]
 r1 = 6 [0000 0000 0000 0110]
 r2 = 6 [0000 0000 0000 0110]
 r0: r2 = -6 [1111 1111 1111 1111 1111 1111 1111 1010]
 r3 = -3 [1111 1111 1111 1101] r7: 0 [0000 0000 0000 0000]

CPI (Clocks Per Instruction)
CPI of the program depends on the number of clock cycles used by each instruction

Pipelined version
 Pipelined version of the instruction set simulation is an optional one. But, whoever with such
 an additional feature will be rewarded greatly.

Scoring Criteria:
The following key quality will be considered:
1. ISA design & coding	10%
1. Presentation	 2%
1. Report with code 3%

	Programming Assignments:
	No.
	Instruction
	Marks

	
	1
	Write a simulation program to simulate the behavior of FCFS, Preemptive SJF, Priority, and Round Robin CPU scheduling algorithms (the simulations must be based on the arrival time of each process). Show all necessary parameters to keep track of progress step-by-step.
	

	
	2
	Write a simulation program to show behavior of banker’s algorithm for multiple resource unit allocation problems. The program should show whether a solution end with a safe state or not. And also the program should have the facility to collect input dataset from both a text file and from a random generator. Show all necessary parameters to keep track of progress step-by-step.
	

	
	3
	Implements the FIFO, LRU, and Optimal page replacement algorithms using any programming language (along with that you should apply the random page-reference string to each algorithm, and record the number of page faults incurred by each algorithm).

	

1

