Twitter Spam Detection based on Deep Learning

Shirish Kayastha (6129700)

Background

- Authored by Tingmin Wu, Shigang Liu, Jun Zhang and Yang Xiang
 - School of Information Technology, Deakin University, Australia
 - January 2017
 - \circ $\,$ Cited by 55 future works since

• Twitter

- A social media platform for microblogging
- Approx each month, 42 million new accounts
- Goal
 - Develop a spam filter based on deep learning
 - Evaluate with other existing techniques
 - ML based
 - URL blacklisting

- Compared against Email spam, users are more likely to click on spam links on Twitter instead
 - **Twitter: 0.13%**
 - Email: 0.0003% to 0.0006%
- On a normal Twitter dataset of 2 million tweets
 - 8% of it is flagged as spam

- Previous techniques for spam filtering were
 - Tweet content-based classifier
 - Couldn't generate comparable results
 - Machine learning-based binary classifiers
 - Easily fabricated features, hampering the accuracy
 - Blacklisting filtering is time-consuming

• Proposed solution

- Word2Vec to pre-process tweets
- Binary detection model to detect spam and non-spam
- Solve existing problems in other models
 - Iow speed
 - under-standard accuracy
 - characteristic extraction problem

• Syntax Analysis

- Analyze tweet on a word level platform
- Detect shortened URLs
 - Used by spammers to hide malicious URLs
 - Older models cannot handle redirected URLs
- Extract tweet content, use deep learning to learn syntactic contexts and information
- Naive Bayes classifier gave more efficient scores

• Feature Analysis

- Extract tweets using Twitter's Streaming API
- Analyze the tweet's features, like "retweet" and "like" counts.
- Hashtag extraction
- **Etc...**

• Bayesian Model

- Learning model to detect spammers
- SVM Model
 - Detect both spam and spammers
- Random Forest Model
 - Obtain features from spam profiles
 - Trained by Decorate and LogitBoost algorithms

- Issues with Feature Analysis
 - Spam drift issue
 - Can be solved by fuzzy-based redistribution and asymmetric sampling
 - Feature fabrication in data collection
 - Social graph to expose robust features
 - Understand Twitter profile behaviours

• Blacklist Techniques

- Blocking malicious websites
- Time-consuming
- Manual labelling

- Understand and analyse text using a deep neural network with multiple layers
- Word Vector for language analysis
- Text-base Vector for linguistic analysis

- Apply Word2Vec to map each word into a multidimensional vector
- 2-level neural network using Huffman technique
- Hierarchical softmax
- Improves efficiency in training
 - High-frequency words can be processed fast
- Stochastic gradient descent by backpropagation
- Optimal vectors are extracted for each word by CBOW or Skip-gram

- Doc2Vec training
 - Represent one vector for every tweet using Paragraph Vector modelling
- Word2Vec training
 - Tweet-length with combination of word vectors and unique document vector per record
- Input features for Random Forest or Neural Network
 - Get document representation
 - Form training dataset
 - Form test dataset

Word2Vec

- 2-layer neural net that processes text by "vectorizing" words
- Input is a text corpus and its output is a set of vectors
- Text into a numerical form that deep neural networks can understand.
- Continuous Bag-of-Words model (CBOW) and the Skip-Gram model.

Word2Vec

Doc2Vec

- Doc2vec is an NLP tool
- Represent documents as a vector and is a generalizing of the word2vec method.

Doc2Vec

Distributed Memory Model

Distributed Bag of Words Model

Figure 2: New Twitter classification workflow based on deep learning

Figure 3: The procedure of learning document vector, where N represents the number of the words in a document.

$$\vec{D} = \{d_1, d_2, \dots, d_M\},\$$

where M is the dimension amount of the document vector, d is the value for each level of it.

 $\vec{t} = (\vec{D}, label),$

where t represents the concatenate vector, and label is the tweet flag of spam or non-spam.

$$T = \vec{(t_1, t_2, \ldots, t_N)},$$

 $\vec{L} = (l_1, l_2, \dots, l_n) = C(\vec{D}_1, \vec{D}_2, \dots, \vec{D}_n),$

where n is the tweets number of testing data.

- Gathered data for 10-days
 - contains 1,376,206 spam tweets and 673,836 non-spam messages
- 4 sub-datasets
 - Dataset 1 and 3: 1:1 spam to non-spam
 - Dataset 2 and 4: 1:19 spam to non-spam

Table	2:	Sample	Datasets
-------	----	--------	----------

•			
Dataset No	Dataset Type	Spam : Non-spam	
1	Continuous	5k : 5k	
2	Continuous	5k : 95k	
3	Random	5k : 5k	
4	Random	5k : 95k	

- Basic Setup (Java)
 - KNIME Analytics Platform
 - Windows 10, I7 CPU, 12GB RAM
- First Layer: Doc2Vec with 2% learning rate and size of 200
- Second Layer: Rotating traditional machine learning models
- Looped 100 times, Calculate mean of each performance metric
- 60-40 train test split

- Recall, Precision, F-Measure and Accuracy metric for each classifier
- Confusion Matrix
 - TP: number of spam tweets classified correctly
 - FP: number of non-spam tweets classified wrongly
 - TN: number of non-spam tweets classified correctly
 - FN: number of spam tweets classified wrongly

Table 3: Confusion Matrix			
	Predicted		
	Spam	Non-spam	
Spam	TP	FP	
Non-spam	FN	TN	

- Text-based using Deep Learning
 - Random Forest
 - process the word representation trained by WordVector Technique
 - Neural Network
 - MLP with input extracted by WordVector
 - Decision Tree
 - Greedy splitting method for tree building

- Traditional Text-based (Vertical Comparison)
 - Palladian
 - Ngrams text classifier
 - Naive Bayes
 - Detect words distribution in documents
 - Naive Bayes (Frequencies)
 - Term frequency

- Feature-based Supported by Machine Learning (Horizontal Comparison)
 - Naive Bayes
 - 2-layered, label of spam/non-spam and the other for set of features
 - Random Forest
 - Decision Tree
 - C4.5, traditional machine learning

- Deep Learning vs Syntax-based
 - MLP performs better in Recall, F-measure and Accuracy
 - 25% higher precision
 - Outperforms the rest

- Deep Learning vs Feature-based
 - F-Measure is 30% higher than Random Forest
 - 9 times higher than Naive Bayes

Evaluation - Deep Learning

Figure 4: Performance Value of our detection method based on deep learning based on 4 sampled datasets. (A) Recall; (B) Precision; (C) F-measure; (D) Accuracy

Evaluation - Traditional Text (VC)

Figure 5: Vertical Comparison of performance values between our technique and traditional text-based detection approaches based on 4 sampled datasets. (A) Recall; (B) Precision; (C) F-measure; (D) Accuracy

Evaluation - Feature SVM (HC)

Figure 6: Horizontal Comparison of performance values between our technique and feature-based methods based on 4 sampled datasets. (A) Recall; (B) Precision; (C) F-measure; (D) Accuracy

Discussion

• Spam Ratio

- Performance stays the same
- Achieves better recall of 2.45%
- F-measure of Naive Bayes
 - 60% in 1:1 dataset
 - 12% in 1:19 dataset

Table 4: Impact of the Spam Ratio by Dataset 1 and 2 using MLP

Unit: %	Recall	Precision	F-measure	Accuracy
Dataset 1	93.48	95.04	94.25	94.30
Dataset 2	91.03	95.84	93.37	99.35

Discussion

- Dataset Dissection
 - Performance is stable
 - Continuous dataset performs better than random dataset

0	of Dataset 1 and 3 using MLP				
	Unit: %	Recall	Precision	F-measure	Accuracy
	Dataset 1	93.48	95.04	94.25	94.30
	Dataset 3	91.48	94.23	92.83	92.94

Table 5: Impact on Sample Dataset Discretisation of Dataset 1 and 3 using MLP

Conclusion

- Explored issues around spam detection on Twitter data
- Proposed a new classification method using DL
- Utilized WordVector techniques for pre-processing
- Computation with high-multidimensional vectors

Conclusion - Future Works

- Explore theoretical studies on the deep learning framework
- Compare against other classifiers outside from the ones mentioned
- Collect more real data from other social media platforms (Facebook)
- Study the feedback of works that cited this paper

References

- Twitter Spam Detection based on Deep Learning
 - <u>https://dl.acm.org/doi/10.1145/3014812.3014815</u>
- Word2Vec Explained
 - https://israelg99.github.io/2017-03-23-Word2Vec-Explained/
- Doc2Vec Explained
 - <u>https://medium.com/wisio/a-gentle-introduction-to-doc2vec-db3e8c0cce5e</u>

