Secured Chat

Computer Networks CS2206

SUBMITTED TO A. PAWUT SATITSUKSANOH

Submitted by :
Sai Kham Lao 5748124
Deep Kumar 5818029
Nattalie Shinkoi 5835205

Secured Chat | [Pick the date]

/

Secured Chat

Secured Chat

Chat rooms are online spaces where users can communicate with one another through
text-based messages. The security element in chat room applications is important to ensure all
message from users are protected from others. So, we need to provide some method to manage
the security problem.

Cryptography (Encrypt-Decrypt)

Cryptography is an important method to keep private data security in order to unauthorized
access. In this project, We are working on the data encryption.

The architecture of the chat room application is divided into two parts. First is sender and
second is receiver. This communication is connected via internet. In sender part, the sender is
needed to enter a message using chat room interface. After that, the message will encrypt using
encryption algorithm. Then, the message will send to receiver. In receiver part, decryption process
will occur. The purpose of this decryption is to convert cipher text to plaintext.

In PKC Every user has a pair of keys which were related :

- Public key : known to everyone in the system with assurance
- Private key : known only by its owner

Protocol

1. Connect both computer to the server.

2. Sender and Receiver agrees on a key.

3. Receiver sends his public key to Sender.

4. Sender encrypts the message with the receiver’s public key and sends the ciphertext back.
5. Receiver decrypts the ciphertext using his private key.

Facts

. Application is written in JAVA

. Chat implementation utilizes Socket IO (websocket + chat rooms)
. Divided into two sides. (Server : Client)

. Written using Eclipse program

Function

Server class :
Main, Users, Run()

Client class:

Main, EncryptMessage, ChangeKey, Run(), DecryptMessage, ChangeDecrypt

Steps that are implemented for encryption

1. Define the logistic equation

2. Define sites for characters and vowels

3.Set the secret key

Start the application by running the console web-based program. Connect to the server.

AJ] Clientjava 83

» (& B s b SecureChat b L Client b &° main(String() : void

1 package SecureChat;
2
3= import java.io.DatalnputStream;
4 import java.io.DataOutputStream;
import java.io.IOException;

6 1import java.net.Socket;
Uy 7 import java.util.Random;

& 1import java.util.Scanner;

w

10 public class Client {

Serverjava 3

PR B H @ » & Users(DataOutputStream, DatalnputStream, Users(])

1 package SecureChat;

3= import java.io.DatalnputStream;
4 import java.io.DataOutputStream;
5 import java.io.IOException;

6 import java.net.ServerSocket;

7 import java.net.Socket;

8

3 public class Server {
10 static ServerSocket serverSocket;

11 static Socket socket;

12 static DataOutputStream out;

13 static Users[] user = new Users[10];

14 static DatalnputStream in;

15

16

17& public static void main(String[] args) throws Exception
18 System.out.println("Starting Server");

19 serverSocket = new ServerSocket(9999);

20 System.out.println("Server Started");

B console 3 =2 B
] 5 B B8
Server (1) [Java /Libraryj/.

13 static Socket socket;

12 static DatalnputStream in;

13 static DataOutputStream out;

14

15& public static void main(String[] args) throws Exception {

16 System.out.println("Enter the IP address you want to conne:
Qs 17 Scanner scan = new Scanner(System.in);

18 String IP = scan.nextLine();

19 System.out.println("Connecting");

20 socket = new Socket(IP,9999);

21 System.out.println("Connection Successful");

in = new DatalnputStream(socket.getInputStream());
out = new DataOutputStream(socket.getOutputStream());

24 Input input = new Input(in);
25 Thread thread = new Thread(input);
26 thread.start();
W 27 Scanner sc = new Scanner(System.in);
28 System.out.print("Enter you name and press enter :");

String name = sc.nextLine();

21
23
24
25

26

28
29

while(true) {
socket = serverSocket.accept();
for(int i = 0; 1 < 10; i++) {
System.out.println("Connection from " + sock:
out = new DataOutputStream(socket.getOutputS:
in = new DatalnputStream(socket.getInputStre:
if(user[i] == null) {
user[i] = new Users(out,in,user);
Thread thread = new Thread(user[i]);

Starting Server
Server Started

Secured Chat | [Pick the date]

Encrypt data at one end using the key, send it over the servers, and at the other end it can be
read because the key is known.

—— A
M Wireshark - Packet 71743 - wireshark_SFBOE74A-7816-42C3-07E3-6F56041FDDFC_20170520144035_a63916 lilﬂlﬂ

4 Frame 71743: 7@ bytes on wire (56@ bits), 7@ bytes captured (56@ bits) on interface @ -
Interface id: @ (\Device\NPF_{SFBOE74A-7816-42(3-97E3-6F56941FDDFC})
Encapsulation type: Ethernet (1)

Arrival Time: May 29, 2817 14:46:45.742922888 SE Asia Standard Time —
[Time shift for this packet: @.@@@ee2888 seconds]

Epoch Time: 1496844685.742922088 seconds

[Time delta from previous captured frame: @.8@8137480@ seconds]

[Time delta from previous displayed frame: 8.152651888 seconds]

[Time since reference or first frame: 369.33535280@ seconds] |
Frame Number: 71743

Frame Length: 7@ bytes (568 bits)
Capture Length: 7@ bytes (568 bits)
[Frame is marked: False]

94 db c9 b5 le b6 a4 d1 8c dc 4a 58 88 @@ 45 @8 JX..E.
@@ 38 0 55 49 00 48 @6 T3 9@ a8 78 fe 53 a8 78 LBLUEL@E. .. .x.5.x
fe 94 27 @f c6 9a ca d5 86 61 ff 48 c@ ca 5@ 13 el Lal@. Pl
28 8@ 54 ca @@ @B @@ Be 44 65 65 7@ 3a 64 37 36 P Deep:d76
64 20 38 208 36 6d d 8 6m

No.: 71747 - Timer 369.885352 - Source: 168.120.254.83 - Destination: 168.120.254,148 - Protocol: TCP - Lengthe 70 * Infb: [TCP Retransmission] 999950842 [PSH, ACK] Seg=13 Ack=1 Win=262144 len=15

Secured Chat | [Pick the date]

/

The figure above show the message that has been sent from Deep. Once it's connected and sent
out, It gets encrypt. The message has been converted to the other form and send over the network.
(Last line)

