
 1

Eakawat Tantamjarik 5929444

Problem: Werewolf

Knife. Moonlit night. Rotten stump with a short black-handled knife in it. Those who

know will understand. Disaster in the village. Werewolf.

There are no so many residents in the village. Many of them are each other's relatives.

Only this may help to find the werewolf. The werewolf is merciless, but his descendants never

become his victims. The werewolf can drown the village in blood, but he never kills his

ancestors.

It is known about all the villagers who is the child of whom. Also, the sad list of the

werewolf's victims is known. Your program should help to determine the suspects. It would be

a hard task, if a very special condition would not hold. Namely, citizens of the village are not

used to leave it. If some ancestor of some citizen lives in the village, then also his immediate

ancestor does. It means, that, for example, if the father of the mother of some citizen still lives

in the village, than also his mother still lives

Input

The first line contains an integer N, 1 < N ≤ 1000, which is the number of the villagers.

The villagers are assigned numbers from 1 to N. Further is the description of the relation "child-

parent": a sequence of lines, each of which contains two numbers separated with a space; the

first number in each line is the number of a child and the second number is the number of the

child's parent. The data is correct: for each of the residents there are no more than two parents,

and there are no cycles. The list is followed by the word "BLOOD" written with capital letters

in a separate line. After this word there is the list of the werewolf's victims, one number in each

line.

Output

The output should contain the numbers of the residents who may be the werewolf. The

numbers must be in the ascending order and separated with a space. If there are no suspects,

the output should contain the only number 0.

Source: http://acm.timus.ru/problem.aspx?num=1242

 2

Problem Description

 Basically this werewolf problem can be modelled as one form of graph problem. By

simulating the villager to be a node and each relation between villager can be viewed as an

edge. From this idea, a village can be depicted as a graph to be more specific a directed acyclic

graph (DAG) since for a family it cannot have its descendants become ancestors which means

no cycle as shown in figure 1.

Figure 1. villager graph

In figure 1, it can be interpreted as a village which have 2 people: A and B. While B is

descendants of A or A is ancestors of B and can be formally written as

Let G = {V, E} be a directed graph with V is a set of villagers and E is a relationship
between each villager

 By looking the werewolf condition from the problem, it said that werewolves never kill

their descendants and ancestors. This means whenever someone die all their ancestors and

descendants cannot be werewolf.

Figure 2. more complex villager graph

 3

Figure 2 shows another more complex village graph. The cross at B node means he/she

is death. From this we can know that A is not a werewolf because he is an ancestors of B and

C, D, and E are also not a werewolf since they are descendants of B. On the other hand, Z is

neither ancestors or descendants of B so this guy is the one suspect to be the werewolf.

Problem Model

This werewolf problem, the best representation is assumed it is a graph problem which

already described in previous section. For a graph problem, there are many ways it can

represent. Two common ways are Adjacancy Matrix and Adjacancy List.

However, in this problem the Adjacancy Matrix is not a good representation because

the ancestors or descendants cannot be known directly once the node is known. It needs to

search through all the other nodes to check whether there have an adjacent which will waste a

lot of time if the number of node (number of villager) is large.

Adjacancy List is the better solution for this problem but it needs to modify to store 2

lists for each node instead of just one. One for ancestors and the other for descendants.

 class Villager(object):

 ancestors = list()

 descendants = list()

From this model, whenever the villager object is known, the ancestors and descendants

of that villager is also directly known.

The Algorithm

 By the condition that werewolves never kill their ancestors and descendants, it can be

concluded that the villagers who are not part of the ancestors or descendants of death villagers

are suspect to be werewolf including his or her brothers and sisters. The easiest way to find out

all ancestors is to use BFS (breath-first search) starting with the death villager and walk through

the ancestors list until no ancestors left mark all the node (villager) reachable by this way as

visited and do the same for descendants. After finished marking all the villagers for both

 4

ancestors and descendants from all the death villager find out all the villagers which are not

visited. Those villagers are the one suspect to be werewolf.

WEREWOLF(N)

 Q  

 for each death s  N

 s.visited_ancestor  true

 ENQUEUE(Q, s)

 while Q  

 u  DEQUEUE(Q)

 for each v  u.ancestors

 if v.visited_ancestor  false

 v.visited_ancestor  true

 ENQUEUE(Q, v)

 for each death s  N

 s.visited_descendant  true

 ENQUEUE(Q, s)

 while Q  

 u  DEQUEUE(Q)

 for each v  u.descendants

 if v.visited_descendant  false

 v.visited_descendant  true

 ENQUEUE(Q, v)

 for each s  N

 if v.visited_ancestor  false and v.visited_descendant  false

 ENQUEUE(Q, s)

 Q is now contains the suspect villagers

The algorithm WEREWOLF works as follows. It starts by adding the death villager

nodes into the queue and mark those villagers as visited for ancestor. Inside the first while loop,

 5

it iterates as long as there still have ancestors. Every node visited this way will be marked to

prevent visiting the same node. After the first while loop, all the ancestors of death villagers

will be marked. The remaining code does the exact same things but for descendants instead.

The suspect list then obtained by appending all the villager nodes which is not both ancestor

and descendant (visited_ancestor and visited_descendant are false)

Algorithm in Action

Figure 3. example village graph

The above village graph shows a village which has 10 villagers. The relationship

between each villager are described using edges and villager 2 and 5 became the victim to the

werewolf. The following (a) – (e) are the first part of the algorithm to find out all ancestors

from death villager where a, d beside each node display the visited flag for ancestor and

descendants respectively. Q shows the current villagers in the queue. The solid gray color

means that node is already dequeue from the queue.

 6

 7

(a) is the start state for this problem. The algorithm adds the death node into the queue

and marks visit ancestor. (b) from the relationship between villager 4 and 2, it knows that 4 is

ancestor of 2 so adds node 4 to the queue and mark node 4 as visit ancestor. (c) villager 4 also

happens to be ancestor of villager 5 but it is already marked by step (b) thus only dequeue 5.

(d) follow villager 4, it knows that villager 1 is ancestor of 4 so adds that to queue and marks

as visit ancestor. (e) no more ancestor, hence it finishes the ancestor part.

 8

 9

 10

For descendant part, it starts with the same way as ancestor part by add death nodes

into queue to be a start state but marks visit descendant instead of ancestor (f). In (g) the

algorithm only dequeue node 2 and does nothing because villager 2 does not have any

descendant. From (h) because villager 5 have 2 descendants, it adds both 7, 8 to the queue and

marks both as visit descendant. (i) works the same way as when finding ancestor (add to queue

and mark visit descendant). (j) does nothing because no descendant. (k) no more descendant

thus the algorithm is done marking ancestor and descendant. The last step is finding the node

which haven’t visited by both ancestor and descendant (node which have both a and d equal

false). Therefore, villager 3, 6, and 10 are suspect to be werewolf.

 11

Analysis

After the algorithm starts, it does almost identical things 2 times one for ancestor and

another one for descendant so all the running time should be multiply by 2 but since the notation

for Big-O for O(2n) is equivalent with O(n) thus, it can be removed to just analyze the first part

for ancestor. First it loops through all the death villager list for resetting ancestor flag since the

number of death villager can be as much as the number of villager thus O(V) for loop all death

villager list. In the while loop the vertex will never be repeated because it can be added to the

queue only once while the value of ancestor flag is false so at most the while loop will run only

up to the number of villager which is O(V). Inside the while loop, the algorithm iterates through

all the ancestor list for that particular vertex only once because the vertex that got dequeued

will never get enqueued again. Thus, this for loop will run at most equal to the number of all

the edges which is O(E). In the end the werewolf algorithm running time is O(V + V + E) ->

O(V + E)

Proof of Correctness for The Algorithm

It is known that for a villager to be suspected as werewolf, the list of normal villagers

who are sure to not be werewolf need to be found first and the suspected werewolf will be

easily found by concluded that suspect werewolves are not the villager in normal villager list.

As state by the rule of the problem, these people can be either ancestor, descendant or both to

the death villager. Thus, it can be claimed that normal villagers as a node in the graph need to

be visited at least once either ancestor or descendant. The starting point to trace back this clue

should have to start from death villager because the problem provides all the relationship, from

that death villagers all his/her ancestor and descendant can be traced.

1. Claim All normal villagers need to be visited at least once – Since the starting villager

in the queue is from death villagers ENQUEUE(Q, v) will called exactly once for either

ancestor or descendant only when v.visited_ancestor or v.visited_descendant is

false otherwise the condition will be ignored. This ensure that villager will add to

the queue exactly once for either ancestor and descendant.

2. Claim All ancestors and descendants of death villager can be reached from death

villager – Since the algorithm always adding vertex to the queue and those vertices

come from the list of ancestors and descendants which means all those vertices are

ancestor or descendant of the starting vertex which is death villager. When the queue is

 12

empty that means the algorithm can no longer find either ancestor or descendant

anymore. Hence, all the ancestors or descendants are already found. it can be concluded

that way because the number of villager is finite and the process for adding vertex into

queue will not repeat the with the same vertex for the same part (ancestor or descendant)

(claim 1).

