Term Project
Algorithm Design
1073. Square Country
Difficulty : 157

Natthakul Boonmee 5710081
Rajanart Incharoensakdi 5735451
1073. Square Country

Time limit: 1.0 second
Memory limit: 64 MB

There live square people in a square country. Everything in this country is square also. Thus, the Square Parliament has passed a law about a land. According to the law each citizen of the country has a right to buy land. A land is sold in squares, surely. Moreover, a length of a square side must be a positive integer amount of meters. Buying a square of land with a side a one pays a^2 quadrics (a local currency) and gets a square certificate of a landowner.

One citizen of the country has decided to invest all of his N quadrics into the land. He can, surely, do it, buying square pieces 1×1 meters. At the same time the citizen has requested to minimize an amount of pieces he buys: "It will be easier for me to pay taxes." — he has said. He has bought the land successfully.

Your task is to find out a number of certificates he has gotten.

Input
The only line contains a positive integer $N \leq 60\,000$, that is a number of quadrics that the citizen has invested.

Output
The only line contains a number of certificates that he has gotten.

Sample

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>3</td>
</tr>
</tbody>
</table>
Dynamic Programming

```java
import java.util.Scanner;
import java.util.Arrays;

public class s1073 {
    public static void main (String [] args) throws Exception {
        Scanner read = new Scanner(System.in);
        int n = read.nextInt();
        int up = (int)Math.ceil(Math.sqrt(n));
        int dp[] = new int[n+1];
        Arrays.fill(dp, 9999999);
        dp[0] = 0;
        for(int i=1;i<=up;i++){
            for(int j=1;j<=n;j++){
                dp[j] = Math.min(dp[j], dp[j-i]+1);
            }
        }
        System.out.println(dp[n]);
        read.close();
    }
}
```

<table>
<thead>
<tr>
<th>Language</th>
<th>Judgement result</th>
<th>Test #</th>
<th>Execution time</th>
<th>Memory used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java 1.8</td>
<td>Accepted</td>
<td>0.14</td>
<td>2 276 KB</td>
<td></td>
</tr>
</tbody>
</table>
Lagrange’s Four Square Theorem

```java
int t1, t2, t3;
for (int i = (int) Math.sqrt(n / 4); i * i <= n; i++) {
    t1 = n - i * i;
    for (int j = (int) Math.sqrt(t1 / 3); j <= i && j * j <= t1; j++) {
        t2 = t1 - j * j;
        for (int k = (int) Math.sqrt(t2 / 2); k <= j && k * k <= t2; k++) {
            t = (int) Math.sqrt(t2 - k * k);
            if (t <= k && t * t == t2 - k * k) {
                System.out.println("(\(\) + i + \(\)^2) + (\(\) + j + \(\)^2) + (\(\) + k + \(\)^2) + (\(\) + t + \(\)^2)\);
            }
        }
    }
}
```
Lagrange’s optimization

```java
import java.util.Scanner;

public class b1073 {
    public static void main(String[] args) throws Exception {
        Scanner read = new Scanner(System.in);
        int n = read.nextInt();
        int ans = numSquares(n);
        System.out.println(ans);
        read.close();
    }

    public static int numSquares(int n) {
        while (n % 4 == 0)
            n /= 4;
        if (n % 8 == 7)
            return 4;
        for (int a = 0; a * a <= n; ++a) {
            int b = (int) Math.sqrt(n - a * a);
            if (a * a + b * b == n) {
                return (a != 0 && b != 0) ? 2 : 1;
            }
        }
        return 3;
    }
}
```

<table>
<thead>
<tr>
<th>Language</th>
<th>Judgement result</th>
<th>Test #</th>
<th>Execution time</th>
<th>Memory used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java 1.8</td>
<td>Accepted</td>
<td></td>
<td>0.124</td>
<td>2124 KB</td>
</tr>
</tbody>
</table>
There live square people in a square country. Everything in this country is square also. Thus, the Square Parliament has passed a law about a land. According to the law each citizen of the country has a right to buy land. A land is sold in squares, surely. Moreover, a length of a square side must be a positive integer amount of meters. Buying a square of land with a side a one pays a^2 quadrics (a local currency) and gets a square certificate of a landowner.

One citizen of the country has decided to invest all of his N quadrics into the land. He can, surely, do it, buying square pieces 1×1 meters. At the same time the citizen has requested to minimize an amount of pieces he buys. "It will be easier for me to pay taxes," — he has said. He has bought the land successfully.

Your task is to find out a number of certificates he has gotten.

Input
The only line contains a positive integer $N \leq 60\,000$, that is a number of quadrics that the citizen has invested.

Output
The only line contains a number of certificates that he has gotten.

Sample

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>2</td>
</tr>
</tbody>
</table>

Problem Author: Stanislav Vasilyev

Problem Source: Ural State University Personal Contest Online February 2001 Students Session

Tags: dynamic programming (hide tags for unsolved problems)

Difficulty: 157

Printable version Submit solution Discussion (52)

✔ My submissions All submissions (28309) All accepted submissions (9180) Solutions rating (7123)
Reference