

CS3201
Algorithm Design

Project Report

SPOJ - ID: 97, Party Schedule

Submitted to

Dr. Thitipong Tanprasert

Submitted by

5710944 Silapin Narthasilpa
Problem name:
Party Schedule
Date:2004-07-01
Implementation difficulty: 14/50
Concept difficulty: 17/50
Time limit: $3 s$
Time used: 0.04s
Source limit: 50000B
Memory limit:1536MBMemory used:23MB
Resource: Swiss Olympiad in informatics 2004

Description:

PARTY - Party Schedule

\#dynamic-programming

You just received another bill which you cannot pay because you lack the money.
Unfortunately, this is not the first time to happen, and now you decide to investigate the cause of your constant monetary shortness. The reason is quite obvious: the lion's share of your money routinely disappears at the entrance of party localities.

You make up your mind to solve the problem where it arises, namely at the parties themselves. You introduce a limit for your party budget and try to have the most possible fun with regard to this limit.

You inquire beforehand about the entrance fee to each party and estimate how much fun you might have there. The list is readily compiled, but how do you actually pick the parties that give you the most fun and do not exceed your budget?

Write a program which finds this optimal set of parties that offer the most fun. Keep in mind that your budget need not necessarily be reached exactly. Achieve the highest possible fun level, and do not spend more money than is absolutely necessary.

Input

The first line of the input specifies your party budget and the number n of parties.
The following n lines contain two numbers each. The first number indicates the entrance fee of each party. Parties cost between 5 and 25 francs. The second number indicates the amount of fun of each party, given as an integer number ranging from 0 to 10.

The budget will not exceed 500 and there will be at most 100 parties. All numbers are separated by a single space.

There are many test cases. Input ends with 00.

Output

For each test case your program must output the sum of the entrance fees and the sum of all fun values of an optimal solution. Both numbers must be separated by a single space.

Example

Sample input:
5010
123
158
169
166
102
219
184
124
178
189

5010
138
1910
168
129
102
128
135
155
117
162

00

Sample output:
4926
4832

Program code:

```
def party_schedule(budget, numparty):
    fee = []
    fun = []
    minbud = 0
    for i in range(numparty):
        inp = raw_input().split()
        fee.append (int (inp[0]))
        fun.append(int (inp[1]))
    dp = [[0]*(budget+1) for j in range(numparty+1)]
    for i in range(1,numparty+1):
        for b in range(1,budget+1):
            if fee[i-1] <= b:
                dp[i][b] = max(fun[i-1]+dp[i-1][b-fee[i-1]],dp[i-1][b])
            else:
                dp[i][b] = dp[i-1][b]
    for b in range(1,budget+1):
        if dp[numparty] [b] > dp[numparty][b-1]:
            minbud = b
    print minbud,dp[numparty] [budget]
line = raw_input().split()
budget = int(line[0])
numparty = int(line[1])
while budget != 0 and numparty != 0:
    party_schedule (budget, numparty)
    raw_input()
    line = raw_input().split()
    budget = int(line[0])
    numparty = int(line[1])
```


Concepts/techniques of solution: Dynamic programming

Submission result:

ID		DATE	PROBLEM	RESULT	TIME	MEM	LANG
19377947	\square	$\left\|\begin{array}{c} 2017-05-10 \\ 13: 54: 03 \end{array}\right\|$	Party Schedule	accepted edit ideone it	0.04	23M	PYTHON

