
Solving Werewolf
Problem

By Eakawat Tantamjarik 5929444

problem from http://acm.timus.ru/problem.aspx?
num=1242

http://acm.timus.ru/problem.aspx?num=1242
http://acm.timus.ru/problem.aspx?num=1242

Werewolf problem
• We have villagers in a village

• Most of them are each other’s relative

• Werewolves are among those villagers

• Werewolves are never kill their ancestors and
descendants

Werewolf problem (2)
• The problem provides
 - The set of death villagers killed by werewolves
 - The number of villagers in the village
 - All relationships between villagers

• The problem wants the set of villager who suspect
to be werewolf

Problem Modelling
• Use graph to represent the entire village

2 villagers (A, B) while A
is ancestors of B

Problem condition
• Werewolves never kill their ancestors and

descendants

B is killed by werewolf

Z is suspect to be werewolf because Z is not ancestor or
descendant of B

Idea to solve problem
• Find out all the ancestors and descendants of

death villagers

• Other villagers not in the list of above are
considered to be werewolf

Graph representation for
werewolf problem
• Use modified Adjacency List representation for

node

• Easier to directly locate all ancestors and
descendants when the node (villager) is known

The algorithm

The algorithm (2)
• It is a modified BFS (breath-first-search) for graph

traversal

• Doing traversal 2 times
- one for ancestor
- another for descendant

• All nodes (villager) not visited by those 2 traversals
are werewolf

Running time analysis
• Loop though all death villagers can be at most the number of all

villagers- O(V)

• While loop only run for once for each villager because of the
ancestor flag - O(V)

• Ancestor list is iterate once for each villager, at most equal to
number of all edges - O(E)

• Do the same thing for descendant part - All above multiply by 2

• Lastly loop through all the villagers - O(V)

• O(2V + 2V + 2E + V) -> O(V + E)

Proof of correctness
• Claim 1 - All normal villager need to be visited at least once

ENQUEUE(Q, v) will add node to be visited when the node is
either ancestor or descendant of death villager by the flag
visited_ancestor and visited_descendant

• Claim 2 - All ancestors and descendants of death villager can be
reached from death villager

From claim 1 villager will be visited by either from ancestor or
descendant relationship or both if the algorithm cannot find
villager anymore to add to Q that mean all ancestors or
descendants are already found because from claim 1 the villager
will not repeat itself in each ancestor or descendant part which is
the result of flag (visited_ancestor, visited_descendant)

