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Introduction: goals

CHECKLIST:

] Comprehend and apply the Case-study’s approach in the Initial design
[ 1 Branch-off and find better models using our own techniques

[ ] Apply the model in a tangible application use-case



Motivation and background

Main motivation

= Learn and apply modern ML-techniques in a challenging use-
case

= Find applicability for the results

Members:

Asnai Narang, 3rd year CS

major Hein Htet Naing (Hector), 3rd year IT major

Kasperi Reinikainen, 3rd year CS
major




In brief: Forex markets

e Foreign Exchange: Currency markets for trading foreign currencies in pairs

e Target users: Commercial and central banks, Investment and other large companies,
Governments

e Forex trading: buy D&t is expected to lose

value

$5.3
Trillion

FX MARKET VS OTHER MARKETS

$19
Billion

528
Billion

NY Stock Exchange Equities Market Futures Market FX Markets



In brief: Artificial Neural Networks

e Original development inspired by Brain

hidden layers
e Can potentially approximate problems with

any level of complexity \\\‘fg \
SSAL~></
SR

output layer

e ‘Learns’ by adjusting weights between input layer
different layers of neurons

e 3 main components (not incl. loss-func.):

1. Weight calc. (integration function) W
2. Activation function (scales the output)

3. Optimization function (param. update)
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Reference studies

Studies regarding Forex Prediction using ML - techniques are not hard to find.
Similarities between all studies (incl. Case study):

e They all (except one using SVM) use some form of Artificial Neural Networks

e [Features are pre-defined and selected mostly intuitively based on various statistical formulations
of ‘raw’ OHLC - currency data

e Prediction accuracy is relatively low (ranging mostly between 40-60 % for classification
problems)



Case study

Prediction of Exchange Rate Using Deep Neural Networks, presentation by University of Nagoya

Training conditions for case study:

e Assumptions: e Features:
1. Future trend consists of past 1. 10-features:
information. { open, close, high, low, datetime,
volume,
e Prediction types: RSI, stochastic RSI, Moving avg, %R }
1. Classification: { Up, Down } 2. Concatenated (method unknown) to
become 100 features
e ANN Type: e Dataset:
1. Deep neural network — USD/JPY 01/01/1991 - 31/12/2014

b g i B i o Ty B o W X o TIPS Ry



Case study training settings

T1 Instances in Train / Total Layers | Neurons | Activation | Optimizati | Learning- | Batch size No-
dataset % train Features (total) on rate epoch
Nagoya 96,366 46,451/ | 10 (concat 5 256 Sigmoid Gradient 0.00006 128 50
University 48% to 100) Descent




Exchange rate [yen/dollar]

Case study: test settings and results
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Number of tests:
— 51,516

Total accuracy range for tests:
—  50.40 % - 53.46 %



Our initial approach (first model)

e Assumptions:

1.
2.

Future trend consists of past information.

We expect that case-study followed common naming when talking about layers.

4+1 =5 layer setting expected

We assume (based on the presentation) they used 48% of data for training in initial case
There is no ‘stall’ when price doesn’t move. We label it as Down.

e Predictiontypes: Classification: { Up, Down }

e Dataset:
— USD/THB — 13/2/2017 ~ 13/10/2017 by Dukascopy online
— At first 5833 instances, after removing 0-volume (noises) days: 3785 instances



First model: Data preprocessing
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First model: Training settings

Tl Instances Train / Features Layers Neurons
in dataset | % train (total)
Nagoya 96,366 46,451/ 10 5 256
University 48% (concat to 100)
Assumption 3785 1821/ 10 5 256 in
University 48% hidden layers
T2 Activation | Optimization | Learning- | Batch s No-
rate ze epoch
Nagoya Sigmoid Gradient 0.00006 128 50
University Descent
Assumption Sigmoid Gradient 0.00006 128 50
University Descent




First model: test settings and outcomes

Test settings:

e 4 tests, each having 400 test instances and testing different parts of the dataset.

T3 # test instances % accuracy
Nagoya University 744 - 51516 50.40 % - 53.46 %
Assumption 400 - 1600 50.50 % - 54.75 %
University




First model: Conclusion

e Accuracy of our initial model and the case study are almost exactly alike
e Assumptions were not affecting negatively
e The intentional changes did not affect negatively (as expected)

e Even though successfully followed the case study’s results
— Notreally a great level of accuracy



Content

1. Introduction

2. Motivation and background

3. In brief: Forex & Neural Networks

4. Reference study and Our initial approach

5. Development stages |
1. Finding optimal neuron-layer setup !
2. Optimizing training-instance settings :
3. Intuition of the tests :
4. Optimal prediction times I

6. Evaluation and assessment

7. Architecture of application use-case



Development stage: neuron-layer setup (setting)

e Permutations (6,4) = 360 possible rounds

e Dataset = 3,785 instances
e Training set = 100 instances

e Num_Test = 100

e Optimizer = Gradient Descent

e Activation func. = RelLU
e Number of epoch = 50
e Batch size = 38

e Optimization steps = (100 / 38 * 50)= 198 steps
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Development stage: neuron-layer setup (result)
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Development stage: no. of training-instances (setting)

e Number of rounds = 17 rounds with each training instance

e Training instances :
o [30, 60, 90, 120, 150, 180, 250, 300, 400, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000]

e Dataset = 3,785 instances
e Testing set = 400 instances of sample size
e Optimizer = ProxmialAdagradOptmizer

e Activation func. = RelLU
e Learning_rate = 0.00006
e Number of epoch = 50

e Batch size = 128
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Development stage: no. of training-instances (setting)
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Development stage: intuition from the tests

Focus: Intuition:

e Adjusting the named parameters don'’t

_ e Num_epoch = 250
improve accuracy much

_ _ _ e Learning rate = 0.0006
e Along with adjustment, optimal number of

S e Batch size = 38
training instances becomes smaller
e Movement of the market affects on overall

accuracy



Development stage: optimal prediction times

e Tested train-instance numbers: [30, 60, 90, 120, 150, 180, 250, 300, 400, 500, 750, 1000,

1250]
e Dataset = 3,785 instances
e Testing set = 500 tests (for each train-instance test)
e Optimizer = ProxmialAdagradOptmizer

e Activation func. = RelLU
e Learning_rate = 0.0006
e Number of epoch = 250

e Batch size = 38



optimal prediction times
with 150 instances

Accuracy distribution for 150 training instances

100.00% == Accuracy
75.00%

50.00%

accuracy

25.00%

0.00%
0

5 10 15 20

hour of day

Hours of the

Hours of the

day Accuracy day Accuracy
0 68.18% 12 65.00%
1 38.89% 13 50.00%
2 63.16% 14 60.00%
3 55.56% 15 50.00%
4 44.44% 16 50.00%
5 72.22% 17 59.09%
6 60.00% 18 65.22%
7 50.00% 19 80.95%
8 57.14% 20 47.62%
9 52.38% 21 40.91%
10 45.45% 22 60.87%
11 59.09% 23 52.38%




Development stage:
optimal prediction times

Best hour Accuracy VS training instance
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30.00 13 68.18%
60.00 8 66.67%
90.00 17 68.18%
120.00 16 77.27%
150.00 19 80.95%
180.00 8 76.19%
250.00 11 72.73%
300.00 4 77.78%
400.00 5 72.22%
500.00 2 78.95%
750.00 2 68.42%

1,000.00 23 83.33%
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First ANN-learning case

e Very first model based on case study and other assumptions

e Results obtained : range of 50-54 %

e Able to obtain exactly same range of accuracy as the case study
e Result range was as expected as the case study provided result

e Provided us a good foundations for deeper level experiments for future testings



Goals

CHECKLIST:

Comprehend and apply the Case-study’s approach in the Initial design
[ 1 Branch-off and find better models using our own techniques

[ ] Apply the model in a tangible application use-case



Development stages

1. Finding optimal neuron-layer setup = {4, 16, 64, 32} with 55.00%

2. Optimizing training-instance settings = 3,000 training instances with 57% accuracy

3. Intuition of the tests = Num_epoch : 250, Learning rate :
0.0006, Batch size: 38

4. Optimal prediction times = {150, 19th hr, 80.95%} & {1,000

, 23rd hr , 83.33%}



Goals

CHECKLIST:

Comprehend and apply the Case-study’s approach in the Initial design
Branch-off and find better models using our own techniques

[ ] Apply the model in a tangible application use-case
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Application use-case

e Python back-end service

e A hybrid mobile app serve for currency predictions and exchange rate



Architecture of the App use-case

Raw
currency
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Application Demo

https://xiaoexau.firebaseapp.com/



https://xiaoexau.firebaseapp.com/

Goals

CHECKLIST:

Comprehend and apply the Case-study’s approach in the Initial design
Branch-off and find better models using our own techniques

Apply the model in a tangible application use-case



Case study

Neural Network & Readings
Data processing

Testing before building models

XiaoEXx's timeline

First ANN-learning model :

@—®range of 5054 %

Optimal neuron-layer setup: ® ®
{4, 16, 64, 32} with 55.00%

® ® Optimizing training-instance :
3,000 with 57% accuracy

Intuitions from all the. o

previous tests
Optimal prediction times :

{150, 19th hr, 80.95%} & {1,000
, 23rd hr , 83.33%}

XiaoEXx,
The Exchange Expert



Conclusion

This project has provided us a very interesting insight of the possibilities of Machine Learning

To be the first machine learning task we think we succeeded in the task given the complexity of the
given problem and background knowledge of the members.

We feel this project serves as an excellent foundation to dig deeper into the field of Machine Learning



Questions & Answers




