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1. Introduction 

For the first senior project our group was assigned to build an 

application that would utilize Machine Learning techniques to predict 

movements in currency exchange (Forex) markets. 

This project topic immediately attracted high interest among our 

group members for reasons that it provides a great learning experience 

in the world of Machine Learning, in highly volatile commercial 

application use-case.  

Our group’s foundations for the project relied on three students 

in their third year of studies in Computer Science or Information 

Technology. None of the members had prior experience of Machine 

Learning, but were equipped with sharp focus and strong interest 

toward the field. 

To begin with, our group was provided a reference study [1] by 

University of Nagoya. The idea was to initially follow the case study’s 

methods of constructing a Deep Learning - model for Forex prediction, 

and after case study’s result had been matched, try to improve the 

method in systematic ways. 

As the case study was in a presentation format with very limited 

description of exact methods, and no published research of the authors 

were found, we had to make some assumptions regarding their 

methods. Several other researches and articles were relied on as well 

for both learning- and implementation purposes and they will be 

referenced as they are referred along the way. 

 

 

 

An actual application was also built for the purpose of this 

project. The application showcases a potential use-case for the data that 

our findings produce. It is provided as a hybrid-mobile application 
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where user can follow currency markets and follow trends of the 

currencies of their interest and also get a prediction of possible future 

trend. 

 

In this report, we will introduce the general concepts of Artificial 

Neural Networks, Forex markets and the depths of our work and the 

development process that was encountered. 

 

 

Figure: simple illustration of our projects problem 
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2. Our motivation and background  

 Our motivation to do research on forex market with machine 

learning technology is to  find out how to apply machine learning 

technique on the real life use case. Our team consists of 3 members and 

each of us have high interest towards modern machine learning 

techniques. We were keen to find out how to apply what we know in 

term of ML technique in the forex market. 

 Before doing this project our knowledge of machine learning 

was next to none. After we got assigned to this project we started to 

read other academic research we found online and also our main 

research path was following Nagoya University’s research paper on the 

forex market by using Machine Learning technique. 

The reason why we choose forex market as a target field to apply 

machine learning technology is due to the nature of forex market 

liquidity and the mount of trading volume that is going in the world 

today. The other reason is due to its popularity in every field of 

industry today.  

 

2.1. Team members: 

 All of our team members are 3rd year students. This report was 

first senior project.  

Kasperi Reinikainen, CS student. A student who is highly 

interested in programming and wanted to further challenge to dive in 

another field study, machine learning.  

Hein Htet Naing, IT student. A student who has high interest in 

programming and moderate knowledge in statistics.  

Asnai Narang, CS student.  
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3. Forex markets  

 The foreign exchange market (Forex market) is a global market 

as a medium for the exchange of foreign currencies.  The market allows 

all participants to sell and buy of any foreign currencies pairs and 

exchange currencies at current determined rate. It is believed to be the 

largest trading volume in the current world. 

 The main participants of the forex market are large commercial 

banks, central banks, commercial companies and investors. The 

currencies are always traded in pairs (e.g. USD/THB), the forex market 

does not set absolute value for one currency but rather the value of 

exchange of market is determined by its relative value with another 

currency. (e.g. 1 USD = 32 THB).  

 Machine learning in our use-case with forex market data is used 

to be trained with historical data of one currency pair and then applied 

to predict whether the next point of time the currency pair exchange 

value is going to increase or decrease. The motivation of applying 

machine learning technology with forex market is to use the data from 

the past to train our machine for finding the pattern from the past data 

and building model according to how the machine found the pattern 

within the past data. The data being used in the machine learning 

training involved open, close, high & low and others extracted feature 

data. With the predicted result from machine, it is believed to help 

experts in their daily trading decision.  
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4. Artificial Neural Networks in brief 

As famous author Tom Mitchell describes in his book ‘Machine 

Learning’ [2], the neural network learning methods provides a robust 

approach to approximating real-valued, discrete-valued, and vector-

valued target functions. This means that neural networks are generally 

applicable for multiple use-cases, with variable desired outcome types 

and varied complexities of the learning problem.  

The development of artificial neural networks (ANNs) has been 

inspired in part by the observation of how very complex webs of 

interconnected neurons are built in the brain. Roughly, artificial neural 

networks are built out of an interconnected set of simple units, where 

each unit takes a number of inputs (often the outputs of other units) and 

produces an output (which may be the input next layer of units) [2]. 

These units or ‘nodes’ are represented as neurons in the network. Most 

common versions of ANNs are ‘feed-forward’ networks, where the 

graph of neurons is directed and connection flows only toward the 

output layer. 

Figure: 3 layer feed-forward artificial neural network 

In recent years, ANNs has attracted much attention and ‘buzz’ 

following recent advances in Artificial Intelligence in the fields like 

image recognition, voice recognition and natural language processing, 



 

 

7 

following successful implementation of ANNs. Because of their power 

to model highly nonlinear functions they are frequently implemented in 

the financial market prediction tasks and this makes them most suitable 

machine learning technique for our project as well. 

There are multiple types of neural networks and they differ in 

tasks which they can perform and also in their training algorithms. 

However, some components rarely differ from ANN type to another 

and we try to cover the most common fundamental components that 

makes ANN such powerful tool. 

 

3.2 Computation model of the neuron 

 Almost regardless of the ANN type in question, they all follow 

the same principle for integration function [3], where each neuron 

calculates the linear relationship from the input into the output. This is 

our first component of the computation model and it can be 

mathematically described as: 

     Wx + b 

Where W is a vector of weights, x is a vector of inputs and b is a scalar (or 

bias). 

A weight represents a connection between two neurons and is 

essentially the main parameter to adjust in the task of finding most 

valuable neuron connections that maps to the desired output. The other 

parameter here is b and together W and b are often seen as �. 

 

Let’s consider a neuron n with multiple connections from 

previous layer. Each of the neurons from the previous layer would send 

an output that would together be considered as an input vector x. Each 

of these connections has an assigned weight (that describes the value of 

the connection) that would be together considered as weight vector W. 

In our neuron n these weight and input products would then be summed 
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and after this scalar b would be added. This can be represented as: 

    y = b + ∑ (wixi) 

 Second fundamental computational part is the activation 

function. From the first part, the integration function the output given 

from the equation is then sent to the activation function. The purpose of 

activation function is to map the value from previous step into a 

common format to be used with conditions. Some common activation 

functions are step-function and logistic-function. 

In initial design of our project, we use sigmoid function which is 

one of the most common logistics functions. Sigmoid function quite 

simply just maps any input value to the positive real-number range of 

[0, 1]. This operation is represented with the following formula: 

 

     1 / (1+e-z)    

(Where superscript z is the input.) 

Since the output of sigmoid function is guaranteed to be between 

0 and 1, we can use it as it is, apply conditions or use more formatting 

techniques to produce an output y of a neuron. Say this particular 

neuron lies at the output layer and the network is supposed to produce 

binary classification, either 0 or 1. We can set condition where our 

output y is 0 for all values below threshold 0.5 and output y is 1 for 

equal and greater values than the threshold. 

Putting the first two parts together we get the following 

computational graph for a single neuron 
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Figure: computational graph of a single neuron [3] 

 

 The third critical computational unit to make up a Neural 

Network is the optimization algorithm that is responsible of adjusting 

the Weight- and Bias-parameters. The parameter optimization is the 

actual ‘learning’ that occurs in the network and is therefore the single 

most important and essential idea behind ANN’s and is based on the 

‘error’ between the produced output and the real ‘class’-label. 

Commonly in Artificial Neural Networks the most common optimizer 

algorithm has been Back Propagation, which ‘propagates’ backwards 

from the output layer after calculating the true error in the output layer 

and then calculates the expected values for the hidden layers and 

adjusts the parameters accordingly. In more recent times especially 

with the widespread use of Deep Neural Networks (like in our work) 

the optimizer algorithms vary and comes in different forms depending 

on the type of Deep Neural Network in use. 
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5. Reference studies and common methodologies 

In the beginning of our project we were provided a reference 

study by University of Nagoya [1] as a guideline, which is provided in 

a format of PowerPoint presentation. The study introduces Deep Neural 

Networks (DNN) as the machine learning method for a problem of 

time-series forecasting both directly (regression) and by classification. 

Forex market being the financial market with highest liquidity of 

trade each day, it attracts research in high numbers, and studies trying 

to find good prediction results in forex markets using machine learning 

techniques are not hard to find. We took a close look into several 

researches conducted by universities all around the world and 

intuitively we can list a few points common to all of them: 

❖ They all use some form of Artificial Neural Networks.  

❖ Features are pre-defined and selected highly intuitively based on 

various statistical formulations of the ‘raw’ input data 

❖ Prediction accuracy is relatively low (ranging between 40-60 % 

for classification problems) 

 

The approach for forex prediction can be listed as a sequence of 

steps in quite straight forward manner, which is common to all studies 

we encountered, regardless of the actual size of the unit (hour, day, 

month): 

1. Find and utilize a data source (that includes market open, close, 

high, low and volume data) 

2. Calculate additional statistical and technical fields based on the 

‘raw’ data and add them to be features of the dataset. (this is the 

first differentiating factor between studies) 

3. Find or pre-define optimal ‘time-frames’. Time-frame is the 

sequence of data that leads to certain event (being predicted) 

(this is the second differentiator) 
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4. Define, train and test the ANN (the third differentiator) 

5. Evaluate. Some use a ‘trading strategy’ simulating the potential 

profit they would generate using their model and others prefer to 

simply measure their ‘accuracy’ in various statistical ways. 

 

5.2 Training conditions of the case study 

 Our case study from University of Nagoya originally has two 

initial approaches for the problem: direct value prediction (regression) 

and binary classification (going either Up (1) or Down (0)). 

They list only one assumption, which is; future trend consists of 

past information. We interpret this as meaning: The future value is a 

result of a sequence of past occurrences, where the length of the past 

and the order matters. 

The case study applies Deep Neural Networks, which is a type of 

Artificial Neural Networks that traditionally consist more than 3 hidden 

layers and because of this, it can adjust to more complex functions. As 

the activation function they have selected a Logistic function (Sigmoid) 

to map the output of a neuron to a range of [0, 1] which supports both 

regression and classification problems. 

The dataset in use in this study includes 97,362 instances, in 

format of hourly exchange rate data between Japanese Yen and US-

Dollar from 1991 until 2014. The ‘raw’ data has the following values: 

date, time, open price, high price, low price, close price and transaction 

volume. 

The ten core features they use in this study are the six raw-values 

(datetime, open, close, high, low, volume) and four additional statistical 

descriptive features (14-day moving average, RSI, Stochastic RSI, 

Williams %R). After processing this, the study suggests that they 

concatenate features with time-dimension to produce 100-dimensional 

feature-space. However, this part was very unclearly explained in the 
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PowerPoint and has no similarities with methods in other research we 

came across, which forced us to leave concatenation in our own use-

case. 

The case study used pre-training for the original model in the 

form of Restricted Boltzmann Machines with model parameter settings 

including learning rate: 0.002, momentum: 0.9, batch-size: 128 and 

epoch: 30. The reason for using pre-training for quite extensively 

trained model like theirs is unknown, and other researches of the field 

did not use pre-training frequently. 

Model training parameters that the study mention include 

learning rate: 0.00006, momentum: 0, batch-size: 128, epoch: 50. 

Number of layers they mention to be 5, but do not specify whether it 

includes the input and / or output layer (commonly: # layers = hidden + 

output). Number of nodes (neurons) in the middle layers they declare to 

be 256 within 5 layers. 

 

 

 

 

 

 

 

5.3 Testing conditions of the case study 

 The input for the testing round is the features of a certain point in 

time, and the output is for regression: the next time closing value, and 

for classification: the next time trend (Up or Down).  

According to the case study’s picture illustration (on page 24) it 

seems like the strategy for training/testing split is to first train from 0 to 

n point in time and then test (predict) n+1. They do this iteratively 

training the same model and moving one point forward with each 
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iteration so that they end up testing multiple instances in sequence 

without using those instances in training before they are being tested. 

The case study didn’t explicitly specify the number of instances 

they use for each iteration for training, but based on the illustrations 

from page 24 onward we estimate it to be some 46 451 instances for 

testing on the first experiments. This is the result of the fact that they 

draw an arrow pointing from 0 to 6th point in a graph that is in 1: 104 

scale and as they mention, has 31 hours instead of 24. Then they 

declare the number of tests being 51516 of 96366 instances. Based on 

this we can find that 96366 - 51516 = 46 451 which is quite close to the 

ratio of an arrow on the graph. 

This test setting is quite unusual for DNN use-cases but is 

actually the correct one to use based on the assumption. The nature of 

time-series forecasting sets some limitations and forces the train-test 

setting to be done in different manner if you believe that time series 

data points are not independent but results of previous occurrences. 

 

 

 

 

5.4 Outcomes of the case study 

 After running exhaustive testing rounds with up to 51516 tests, 

the study was able to reach 50.40 % - 53.46 % accuracy on binary-

classification case predicting the close-value of the next data 

movement. On regression they didn’t specify accuracy but graph 

movement was showing high in-accuracy with the initial settings. 

The case study then moved to other direction in their train-test 

settings. They shifted to predict only short term trend transitions 

predicting only binary classification with shorter time-frames, but 

didn’t really specify any information of the actual changes in the 
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settings other than graphs. They did mention a value ‘threshold’ that 

they set to 0.8 for ‘Up’ and 0.2 for ‘Down’. How we see this is, if 

output y is anything between 0.8 and 0.2 there is no prediction, and 

when it hits these thresholds, the prediction has enough confidence and 

will be conducted with the corresponding binary class. With this sort of 

setting they were able to predict with up to 94 % accuracy with much 

lower number of test-iterations. 

Since the shift in train-test settings doesn’t have any clear 

documentation, it is hard to try to replicate this case’s train-settings. 

So for the latter part of their study there is less comparison we can 

conduct between our studies. 
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5.5. Initial approach 

In the first stage of our project we wanted to follow the 

University of Nagoya’s case study as closely as possible to be able to 

draw conclusion of both their and our work’s accuracy and similarities. 

After that on the second stage we would branch off and systematically 

try to find better solutions to build a better model for Forex prediction. 

Since several critical parts in the settings were not clear in the 

case of referred case study, we had to make some assumptions along 

the way. Also, some settings like the selected dataset is not necessary to 

be exact same, as the Artificial Neural Network model should adjust to 

describe the patterns of any sequential currency data roughly the same 

way. 

A major difference we wanted to draw to the original study is 

that we are not trying to perform direct prediction (regression), but only 

binary classification (Up: 1 or Down: 0). This is drawn from the fact 

that case study didn’t perform well at all for regression problem and the 

latter part of their study even they choose to stick to just binary 

classification. Handling a regression problem generally is a more 

complex problem and has higher requirements for parts like feature 

selection. As the time wasn’t enough to dig deeper into that field. 

 

5.5.1 Data preprocessing 

 Our data was provided by a private exchange broker called 

Dukascopy, a Swiss forex bank and market place, and it consisted of 

hourly data generated between 13.2.2017 and 13.10.2017 including a 

total of 5833 instances. 

 

Few pre-processing modifications were necessary before 

continuing with this task. First one was to convert datetime column into 

different format. In our case, exact date and time format doesn’t serve 
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our purpose as valuable training feature, since they are all unique. We 

are using less than year’s span of data, so even removing only the year 

doesn’t serve our purpose as all months make all instances to become 

unique again. In order to let our neural network to detect patterns 

between time-points on different weeks (we assume that weekday’s and 

hour’s has common movement patterns) we encoded the datetime to 

represent only the week on hand and the hour on hand.  

Encoding was conducted like this: 

❖ Weekday (mon-sun) ranges between integer values 0-6 

❖ Hour value ranges between 00-23 

❖ As we remove year and month data, the data gets a format of 

WHH where W is single digit representing weekday and HH is 

two digits representing hour. Example value on Sunday 23:00 

would be represented as 623 

 

Next preprocessing that was needed was to remove the high 

frequency of noise in the data. We found out that the broker that 

provided the data had listed all the trading hours even outside of their 

active hours during the week and weekends. This resulted the service to 

have a high frequency of instances with 0 - transaction volume and no 

change in the price movement. We tried experiments with this data 

which accounted as very good accuracy (up to 70 %) because our 

training settings was able to detect these trends given their high 

frequency in the data.  

After removing this 0-volume data we are left with 3785 training 

instances. Then we calculate four statistical descriptive features derived 

from the raw-data to better represent the time-series movement 

(following the example of the case study). These features are namely 

14-days moving average, RSI, Stochastic RSI and Williams %R. 
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Class label is then given to each row depending whether the ‘close’ 

price in the next instance is higher or lower than the ‘close’ price of the 

current instance. 

 

5.5.2 Training conditions for our initial approach 

  Following assumptions defined our initial approach for the 

forex classification problem: 

❖ Fundamental assumption of the prediction problem:  

Future value is a result of a sequence of past occurrences, where 

the length of the observed past and the order matters. 

❖ Number of layers and distribution of neurons between layers:  

the case study stated only that they are using 5-layers with 256 

neurons in the middle layers. Commonly when talked about 

number of layers, it includes the hidden-layers and the output 

layer which means 4+1 = 5 setting in this case. 256 neurons were 

distributed evenly between hidden layers which left us with 4 

hidden layers each having 64 neurons in this initial setting. 

❖ Training-testing split:  

the case study had data consisting a total of 96366 instances. 

They seemed (unclear, so we have to assume) to use 46451 for 

training before each test, which means they used roughly 48 % of 

the total dataset for training. 

❖ Some noise (or misclassification):  

we are only classifying test cases under 2 classes, Up and Down. 

In reality the change between two day’s close prices can also be 

0, which means the price actually ‘stalls’. We classify 0-changes 

under the label ‘Down’. This adds little ‘misclassification’ noise 

but is in fact small in numbers. 
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The type of classifier in use here is a 5-layer DNN classifier with 

4 hidden layers and an input and output layer. Each of the hidden layers 

has an even distribution of 64 neurons per layer. Activation function in 

use here is a sigmoid function that maps its output to be in range 

between [0, 1]. 

Our dataset differs from case study. As applying this 

classification problem in Thailand for the purpose of a Senior Project in 

a University, it would be more suitable to localize it to consist local 

currency. Our data is exchange rate between US - Dollar and Thai Baht 

from start of 2017 until autumn of 2017 consisting of 3785 instances 

preprocessed as described in above section. For training we used 1821 

instances. 

The features we use for training are the 10 core features 

described in the pre-processing description. We did not further 

concatenate the features with time-dimensions following the case study, 

as it was left unclear what they exactly meant by that. We didn’t pre-

train the data either. 

 

 

 

 

Following training parameters were specified according to case study:  

❖ Learning rate ⇒  0.00006 

❖ Batch-size:  ⇒ 128 

❖ Number_epoch ⇒  50 

❖ No momentum 
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Comparison between case study and our initial training settings: 

 

T1 Instances 

in dataset 

Train /  

% train 

Features Layers Neurons 

(total) 

Nagoya 

University 

96,366 46,451 

/ 48% 

10  

(concat to 

100) 

5 256 

Assumption 

University 

3785 1821 / 

48% 

10 5 256 in 

hidden 

layers 

 

T2 Activati

on 

Pre- 

training 

Learning

-rate 

Momen

tum 

Batch_

size 

No- 

epoch 

Nagoya 

University 

Sigmoid RBM 0.00006 no 128 50 

Assumption 

University 

Sigmoid no 0.00006 no 128 50 

 

 

 

 

 

 

 

5.5.3 Testing conditions for our initial approach 

 For conducting the test we followed the case study. The test 

settings were actually the appropriate kind for this kind of problem 

setting. In the test setting we iterate t times training the model with the 

training settings, each time using n instances for training, after which 

we test (predict) the label for instance n+1. The number of iterations t is 

the number of tests which in our case was 400 for one test, but we 



 

 

20 

repeated the test 4 times to cover 4 discrete ranges in the dataset. 

Therefore in total we conducted 1600 tests. 

 

5.5.4 Outcomes of our initial approach 

 The case study was initially able to reach accuracy of 50.40% to 

53.46 % with test sets ranging from 744 to 51516. We ran 4 tests with 

initial test settings, each having 400 test instances and testing different 

parts of the dataset. We were able to get classification accuracy 

between 50.50 % and 54.75 %. 

 

T3 # test instances % accuracy 

Nagoya University 744 - 51516 50.40 % - 53.46 % 

Assumption 

University 

400 - 1600 50.50 % - 54.75 % 

 

 

 

 

 

 

 

5.6 Conclusion of initial approach 

 As the previous section shows, we were able to match University 

of Nagoya’s case study almost exactly. This happened even though we 

had a few intentional changes (like the dataset) and some limitations we 

had following uncertainty of case study’s methods.  

Even though the results follow almost exactly the case study, 

they can be concluded as being bad results for the actual classification 

problem. Accuracy of up to 54.75 % in binary classification can be 
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compared to accuracy of tossing a coin on each round, which would 

produce roughly the same results. 

It was clear even during the construction of the initial study that 

we wanted to do changes and optimize our training conditions several 

ways. The results from this part provides us a good comparison point to 

improve the accuracy in our actual classification problem. 

From now on, we are not going to follow the University of 

Nagoya’s example but try to find higher prediction accuracy in our 

novel systematical ways. 
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6. Development process 

We keep the following assumption throughout the following 

development stages: 

❖ Fundamental assumption of the prediction problem:  

Future value is a result of a sequence of past occurrences, where 

the length of the observed past and the order matters. 

❖ Number of layers: 

We assume 5 layers provides a good approximation for our 

problem’s complexity and we do not intend to change this 

 

6.1 Finding the optimal number of neurons 

 Since our artificial neural network works like a ‘black box’ 

where the hidden layers job is to model the problem concept by 

learning from labelled examples, the setting of the network’s layers is 

probably the single most important configuration in our network. 

The first development step for us is to find the optimal settings 

for the number of neurons in each layer. We are not going to change the 

number of layers, and the number of neurons in each layer will be 

something from the set {4, 8, 16, 32, 64, 128}. 

Our method for finding this is simply to run an independent, 

standard test case for each possible permutation in this setting. It is 

critical to underline here that here, it has to be permutations, as the 

order of neurons matters greatly. The process will be explained in more 

detail in section 8. 
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6.2 Finding the optimal number of training instances 

 The number of training-instances to use for each test is another 

interesting differentiator in our learning problem. If we approach the 

problem with intuition, we might say that for predicting one instance 

ahead from past x instances, the size of x should rather be shorter than 

longer. But we don’t really know that so we have to test it and draw the 

conclusion based on the facts. 

We decided to base the test on constant parameter settings, and 

run equivalent training-testing cycles for 16 different lengths of training 

instances, namely {30, 60, 90, 120, 150, 180, 250, 300, 400, 500, 750, 

1000, 1250, 2000, 2500, 3000}. The numbers are selected intuitively 

rather than based on some permutation or other selection method like in 

the process of selecting the neuron-settings per layer. The process is 

explained in more depth in section 8. 

 

6.3 Finding optimal time for prediction with optimized number of 

training instances 

 This test is focusing on finding out finding out the accuracy of 

predictions at each point of the time within a day with different number 

of training instances set. We are expecting to see if the predictions is 

consistent within some hours of the days.  

 We decided to run a sample of 500 sample with different 

instances, namely {30, 60, 90, 120, 150, 180, 250, 300, 400, 500, 750, 

1000, 1250, 2000, 2500, 3000}. The test will be focusing on the hourly 

predictions from each training instances.  
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6.4 Research findings (and value of the study) 

 The research stage began with building a stable model. To begin 

with, we built the model by using Estimators from TensorFlow™. 

tensorflow.estimator is a high level API which is meant to be used for 

machine learning programming. It is enclosed of training, evaluation, 

predictions and export for serving. The classifier we used for our 

experiment is DNNClassifier which is inherent from Estimator.  

 

6.4.1 Optimizing number of neurons  

 In order to find out the optimize number of neurons for our 

neural network, we’ve decided to set the layers to be four and running 

the tests by replace number of neurons in each layers. We came out the 

systematic approach to for changing number of neurons in each layer. It 

will start from {4, 4, 4, 4} neurons in each layers. For each round of the 

test the number of neurons will be change to 8,16,32,64 up to 128 

neurons in each layers. The possible round of the test is:  

   Permutation (6, 4) = 
𝟔!

( 𝟔 − 𝟔 )!
  

6.4.1.1 Setting for the test 

❖ Permutations (6,4) ⇒  360 possible rounds of testing  

❖ Dataset    ⇒  3,785 instances  

❖ Training set   ⇒  100 instances 

❖ Testing set   ⇒  100 instances per one permutation 

❖ Optimizer   ⇒  Gradient Descent 

❖ Activation func. ⇒  ReLU 

❖ Number of epoch  ⇒ 50 

❖ Batch size  ⇒ 38 

❖ Optimization steps ⇒ (100 / 38 * 50)= 198 steps 
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6.4.1.2 Findings and analyses  

 The accuracy of the tests are being measured as how many 

predictions are being correct in the sample size of 100. Our predictions 

involved whether the next point of time if the close price of currency 

pair is going to increase or decrease. 

 The total duration to run the tests with above setting for all 

possible rounds took roughly 35 hours. We split the possible 

combinations of permutation into three sets and ran with 3 computers. 

Each computer took around 11 hours. The result of tests are 

summarized in the graph below.  

  

 

 Figure: Result for optimizing number of neurons  

 

❖  Basis statistic  

➢ Mean   ⇒ 0.51 

➢ Mode  ⇒  0.52 

➢ Range  ⇒  0.42 ~ 0.55  

➢ Best Result  ⇒  { 4, 16, 64, 32} with 55.00%  

 

  

From the statistic number we obtained above, {4, 16, 64, 32} set 

of neurons gave the best result with 55.00% accuracy. We also noticed 
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that the order of layers took an important role in the accuracy of the 

result which means the order in {4, 16, 64, 32} can’t be changed. It has 

to be in the same order as mentioned above. We will be using the 

neuron set with {4, 16, 64, 32} for all the future testing.  

 

6.4.2 Optimizing accuracy with number of training instances  

 After we found out the neuron set of {4, 16, 64, 32} gave us 

most accuracy of result with 55.00% accuracy. We wanted to improve 

our result as much as we can. We have modified a few setting of 

parameters to run the test again.  

 For this test the main focus is how many of training instances 

should we use to obtain optimized results. We ran the tests with 

following number of training instances:  

Training instances: [30, 60, 90, 120, 150, 180, 250, 300, 400, 500, 

750, 1000, 1250, 1500, 2000, 2500, 3000] 

 

6.4.2.1 Setting of the test  

❖ Number of rounds ⇒  17 rounds with each training instance  

❖ Dataset    ⇒  3,785 instances  

❖ Testing set   ⇒  400 instances of sample size 

❖ Optimizer   ⇒  ProxmialAdagradOptmizer  

❖ Activation func. ⇒  ReLU 

❖ Learning rate  ⇒  0.00006  

❖ Number of epoch  ⇒  50 

❖ Batch size  ⇒  128 
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6.4.2.2 Findings and analyses 

 

 

Figure: Optimizing accuracy with training instances  

 

❖  Basis statistic  

➢ Mean   ⇒ 0.50 

➢ Mode  ⇒  0.49 & 0.52 

➢ Range  ⇒  0.46 ~ 0.57  

➢ Best Result  ⇒  3,000 with 57% accuracy  

 From the statistic results that we’ve obtained, we were able to get 

57% accuracy with 3,000 training instances. 57% accurate was a 

breakthrough result from what we have been trying but in reality 57% 

is not good enough. We were trying to look back at all the settings from 

this test to find out what else could we change to make higher accurate 

predictions. From this test, we’ve notice that the learning rate is 

relatively low as compared to the default learning rate (0.1) set by 

TensorFlow™ group. Some of these parameters doesn’t seem to be 

well optimized for our use-case and intuitively it seems like the best 

result from this round is drawn most likely by the simple reason that 

3,000 training instances provides quite a lot more rounds for parameter 

adjustment. 
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6.4.3 Training parameter optimization based on intuition and 

previous test findings 

 We had some presumptions about some of the training 

parameters that did not seem to match our expectations and of good 

design to model the problem. These parameters are namely epoch, 

batch-size and learning rate. We ran several unsuccessful tests after the 

last reported test (8.2 - optimizing the number of training instances), 

and based on the last reported test and the unsuccessful ones, there was 

a few patterns to detect: 

❖ Adjusting the named parameters don’t much improve accuracy 

❖ Along with adjustment, optimal number of training instances 

becomes smaller 

As the value of the above mentioned attributes are not the most 

critical factor in of our neural network design, we didn’t want to go for 

exhaustive tests optimizing these parameters, but instead optimize the 

parameters intuitively to get the optimal number of training instances to 

get somewhere closer to the mid-range of our training-instances.  

The following values for the concerned parameters were used in 

this round: 

❖ Num_epoch  ⇒ 250 

❖ Learning rate ⇒ 0.0006 

❖ Batch size  ⇒  38 

 

 

 

 

 

The intuition driving for the selection of these values was mainly 

that from the multiple previous tests, it seems like shorter steps are 

better for learning than longer steps and that the network needs more 
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steps for learning (optimizing) the parameters than what was previously 

provided (derived from the case study). 

Simply put, we wanted to provide our network more time to 

adjust the weights but at the same time make sure the optimization 

steps are not too large and over time affect negatively for the learning 

process. 

 

6.4.4 Finding optimal time for prediction with optimized number of 

training instances (hybrid approach) 

In this approach we wanted to find if there is some specific time-

periods with higher accuracy than in the other time-periods. This is 

particularly interesting due to the fact that our data set has some ‘gaps’ 

after removing hours without any trading volume. We assume that 

during those ‘gap’-hours the trend signal from the previous known data 

will weaken with the length of the ‘gap’ and therefore result in worse 

prediction.  

As we had not disclosed the absolute optimal number of training 

instances, and to run more test-cases for better reference, we decided to 

run the same test of finding the ‘hourly’ prediction for multiple 

different numbers of instances. 

 

 

 

 

 

6.4.4.1 Test setting 

❖ Tested train-instance numbers:   

[30, 60, 90, 120, 150, 180, 250, 300, 400, 500, 750, 1000, 1250] 

❖ Dataset    ⇒  3,785 instances  

❖ Testing set   ⇒  500 tests (for each train-instance test) 
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❖ Optimizer   ⇒  ProxmialAdagradOptmizer  

❖ Activation func. ⇒  ReLU 

❖ Learning_rate  ⇒  0.0006  

❖ Number of epoch  ⇒  250 

❖ Batch size  ⇒  38 

 

6.4.4.2 Findings and analysis 

 

 

 Figure: Best hour prediction from set of training instances  

 

 

 

 

This test has some very interesting outcomes. Firstly, as 

expected, the optimal number of instances kept moving towards smaller 

number along with higher epoch for relatively small learning rate. 

Secondly, each number of training instances (except for the first, 30) 

produced overall accuracy of higher than 50 % which is in general 

more consistent than before in our tests. However, these two are just 

more of side-notes than main observations compared to the true 

outcome. 
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One major note is that, by dividing the predicted results with the 

corresponding hours, we were able to find some regions in the time-

frame where accuracy was particularly good. Out of which there were 2 

cases where the predictions were over 80%. One set with 150 instances 

which produced 80% accuracy at 19th hour from the sample and 

another testing set with 1,000 instances which has produces 83.33% at 

23rd hour from the testing sample. There is one another good finding 

where a 3-hour time-frame between hours 17-19 where average 

accuracy was over 68 % (with 66 tests). These findings suggest that as 

hoped, our classifier is able to detect consistent trends in the market. 

To conclude this test, we were able to find out that the best 

accuracy predictions occurred at 19th and 23rd hour of the day with 

over 80% accuracy. Due to the reason we used a data provider from 

Switzerland to train and predict, the timing are presented in Switzerland 

as well.  

 

 

 

 

 

 Training 

instances   

Hour of day  Sample size   Correct 

predictions  

Accuracy  

 30.00 13 22 15 68.18% 

 60.00 8 21 14 66.67% 

 90.00 17 22 15 68.18% 

 120.00 16 22 17 77.27% 
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 150.00 19 21 17 80.95% 

 180.00 8 21 16 76.19% 

 250.00 11 22 16 72.73% 

 300.00 4 18 14 77.78% 

 400.00 5 18 13 72.22% 

 500.00 2 19 15 78.95% 

 750.00 2 19 13 68.42% 

 1,000.00 23 18 15 83.33% 

 

7. Evaluation & assessment 

Our work has had three core goal-components in it. The first goal 

was to learn and apply machine learning in the problem-setting of 

currency exchange prediction following a case study of the field. The 

second goal was to then branch-off and find ways to improve the 

results and find interesting outcomes by making independent tests. 

Third goal was to apply this concept to some real-life use-case to show 

the applicable value of the work.  

 

 

7.1 First ANN-learning problem and the case-study approach 

 After extensive study of the topics from academic literature, 

practical tutorials and research papers including our case-study, we 

were able to break a problem like this into parts to understand the core-

components of the task, and the techniques, in order to develop our first 

ANN-learner. This followed as closely as possible the case study we 
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had assigned, but due to the highly cryptic nature of their presentation, 

several assumptions and more thorough understanding of the concepts 

were required.  

We were able to build a system that is almost exactly the same 

range in terms of accuracy as our case study. The results in range    50-

55 % were as expected and provided good foundations for deeper level 

experiments for the next rounds. 

 

7.2 Improvements towards better prediction accuracy 

 After the first stage was check-marked, we wanted to move to 

more systematical testing with already existing attributes that would 

reveal more about the behavior of our learning problem in different 

settings.  

We purposefully left features untouched. Even though the 

features probably are (and we are aware of it) the single most important 

part of a machine learning problem, the foundations the three of our 

group members had of Forex markets, didn’t provide sufficient enough 

base to really dig into really valuable analysis of different technical 

analysis and statistical evaluation of currency movements. Someone 

else had done the groundwork for this (our case-study) and with the 

given time, our additional contribution to this would have added no 

value. 

The results were delightfully up-trendy. In very short time we 

were able to simulate dozens different test-scenarios revealing value 

like the best neuron-settings per layer and the somewhat optimal 

number of training instances and based on them good valued tests were 

drawn. Especially after making the assumption of our dataset including 

‘gaps’ that lead us to make observations based on each hour. 
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Some hours were proved to have really impressive prediction 

accuracy. For some individual hours there was even over 80% accuracy 

shown, and even for 3-hour frames we could find 68% accuracies. This 

sort of accuracy can be valuable even for commercial purpose, and 

should be considered a good point for motivation for further study of 

the field in the future as well. 

 

7.3 Application use-case 

 The third goal was to develop an application that can actually 

utilize this kind of use-case. We developed an app as a combined 

course-effort (with same team-members) to be shown in our Hybrid 

Mobile Application course and the Senior Project 1 assessment.  
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8. Architecture of application use case 

 To show our machine learning algorithm in real life application, 

we have developed an application to track currency exchange rates, 

providing customization in both settings and view, and provides a trend 

prediction for 5 different currency pairs. The application consists of 

two parts: 1. Python back-end to produce and update the latest data; 2. 

Ionic-framework front-end to provide the user interface and 

functionality to utilize the data we produce. 

 

8.1 Back end program 

 The back-end program consists of a few python scripts to 

retrieve and update simple ‘daily’ data, a machine learning - model 

training and testing, and the google firebase cloud - database to keep all 

this updated data available for the front-end program. 

 

The python back-end has a script to just update firebase db’s 

‘historical’ price details which consists only of adjusted daily prices 

from last 7 days. When this script is triggered, it retrieves the 10 hard-

coded currency pair’s data from the past 7 days and overrides Firebase 

NoSQL historical-price datastring with those values. 

The machine learning-part of our back-end utilizes the exact 

same latest version of the model that we have been using for our 

experiments, but in the application use-case we are not using hourly, 

but daily data, which is absolutely just as well applicable to our 

scenario, but not as extensively proved to belong the same accuracy 

ranges.  

 

 

After the DNN-model has been trained in the python-backend, 

the program stores the model (for all 5 provided currencies) as a file 
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and then it can be tested and further trained daily. With each daily 

trigger of the test, the latest predictions for all currencies will be 

updated directly to another firebase NoSQL data string to be retrieved 

by the  front-end. 

 Firebase serves as the direct API for our front-end app and 

handles a few back-end services beyond the already mentioned ones. It 

takes care of the authentication, providing social auth Facebook and 

Google to users to secure their data and provide customization options. 

It keeps three main NoSQL data strings for use, namely: historical 

charts, predictions, and user settings. Firebase backend services are also 

utilized as the host provider. 

 

8.2 Front end program  

  The front of our application is built on top of Ionic framework 

that is meant for hybrid mobile application development, meaning that 

the application is built as a web-app with the common technologies but 

it provides native-application integrations with the device and could be 

distributed as a native application. 

Our front-end application is intentionally made to communicate 

only with one core firebase source-db instead of multiple distinct 

API’s. This simplifies the construction of the application interface and 

streamlines the content delivery. 

 

 

 

 

The functionalities we provide in the application: 

❖ login (app is not accessible without logging in) 

❖ snapshot of selected currency charts (historical price chart) 

❖ details of selected currency pair (scalable chart, options) 
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❖ currency calculator for selected pair 

❖ prediction for 5 different currencies 

❖ customizability (any number of the 10 pairs can be selected) 

  

The application utilizes the main data, currency predictions, in 

the chart-details page where, if one of the pairs with available 

prediction, the screen will pop up a message telling the trend where it is 

moving next. 
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Appendix A - Application visualization 
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