
Term Project
Algorithm Design

1021. Sacrament of the Sum
Difficulty : 141

By:

5838428 Harpreet Singh Arora

5748106 Serhii Bielik



Problem Description (1)

Background

— The Brother of mine, the Head of Monastic Order wants to know tomorrow about the results long-term 
researches. He wants to see neither more nor less than the Summering Machine! Even moreover, he wants 
our Machine — only a machine — to demonstrate its comprehension of the Sacrament of the Sum as deeply 
as it is possible. He wants our Machine to find two numbers that give the sum equal to the Sacred Number 10 
000
— Tsh-sh-sh! This is madness that borders on blasphemy! How can the Machine calculate the Sacred 
Number? Twenty-seven years we work on it, but we’ve could teach it to tell if the sum of two introduced 
numbers greater or lower than 10 000. Can an ordinary mortal find two numbers that there sum will be equal 
to 10 000?
— But we’ll have to do it with the help of our Machine, even if it is not capable. Otherwise we’ll have… let’s 
say, big problems, if it is possible to call boiling oil like this. However, I have an idea. Do you remember, last 
week we’ve entered two numbers -7 and 13 into the Machine, and it answered that their sum is lower than 
10 000. I don’t know how to check this, but nothing’s left for us than to believe to the fruit of our work. Let’s 
enter now a greater number than -7 and start up the Machine again. We’ll do like this again and again until 
we find a number that being added to 13 will give us 10 000. The only thing we are to do is to prepare an 
ascending list of numbers.
— I don’t believe in this… Let’s start with the sum that is obviously greater than the Sacred Number and we’ll 
decrease one of the summand. So, we have more chances to avoid boilin… big problems.

Haven’t come to an agreement, the Brothers went away to their cells. By next day everyone of them has 
prepared a list of numbers that, to his opinion, could save them… Can both of the lists save them together?



Problem 
Description (2)

Problem

▪ Your program should decide, if it is possible to choose from two lists of 

integers such two numbers that their sum would be equal to 10 000.

Input

▪ You are given both of these lists one by one. Format of each of these 

lists is as follows: in the first line of the list the quantity of numbers Ni of 

the i-th list is written. Further there is an i-th list of numbers each 

number in its line (Ni lines). The following conditions are satisfied: 1 

≤ Ni ≤ 50 000, each element of the lists lays in the range from -32768 to 

32767. The first list is ascending and the second one is descending.

Output

▪ You should write "YES" to the standard output if it is possible to choose 

from the two lists of integers such two numbers that their sum would 

be equal to 10 000. Otherwise you should write "NO".



Problem 
Description (3)

Input output

4

-175

19

19

10424

3

8951

-424

-788

YES

Sample



Problem Description (4)

▪ Time limit: 1.0 second

▪ Memory limit: 64 MB

▪ Problem Author: Leonid Volkov & Alexander Petrov

Problem Source: Ural State University Internal Contest 

October'2000 Junior Session

▪ Difficulty: 141



Solution #1

▪ The solution is peaty straightforward.

▪ The first obvious solution will be to go directly through 

arrays and compare values one by one in the nested 

loops.

▪ However, the complexity for this solution will be O(𝒏𝟐). 

And that is far too slow to be able to pass all test cases.



Program’s 
Code #1



Solution #2

▪ Thus, we have to find more efficient way to solve this 

problem. We know that input array are sorted so this is a 

perfect situation for applying Binary Search which has 

great performance O(Log n).

▪ Binary Search: Search a sorted array by repeatedly 

dividing the search interval in half.



Program’s 
Code #2

Therefore, overall we got the O(n Log n) complexity because for each element 

in array b we run search. In the function check() we are splitting second 

array to halves until the suitable pair number will be found or 

until array is ended.

This solution is fast enough to pass all test cases:



Timus Online Judge Submission Result



Solution #3

▪ Finally, we can improve the solution to make logic more 

clear.

▪ This version runs slightly faster, probably because of 

reducing arithmetical operations.



Program’s 
Code #3



Program’s 
Code #4

The recursive implementation of Binary 

Search is slower than iterative version



Thank You
☺


