Term Project
Algorithm Design
1021. Sacrament of the Sum
Difficulty : 141

By:
5838428 Harpreet Singh Arora
5748106 Serhii Bielik
Problem Description (1)

Background

— The Brother of mine, the Head of Monastic Order wants to know tomorrow about the results long-term researches. He wants to see neither more nor less than the Summering Machine! Even moreover, he wants our Machine — only a machine — to demonstrate its comprehension of the Sacrament of the Sum as deeply as it is possible. He wants our Machine to find two numbers that give the sum equal to the Sacred Number 10000.

— Tsh-sh-sh! This is madness that borders on blasphemy! How can the Machine calculate the Sacred Number? Twenty-seven years we work on it, but we’ve could teach it to tell if the sum of two introduced numbers greater or lower than 10000. Can an ordinary mortal find two numbers that there sum will be equal to 10000?

— But we’ll have to do it with the help of our Machine, even if it is not capable. Otherwise we’ll have… let’s say, big problems, if it is possible to call boiling oil like this. However, I have an idea. Do you remember, last week we’ve entered two numbers -7 and 13 into the Machine, and it answered that their sum is lower than 10000. I don’t know how to check this, but nothing’s left for us than to believe to the fruit of our work. Let’s enter now a greater number than -7 and start up the Machine again. We’ll do like this again and again until we find a number that being added to 13 will give us 10000. The only thing we are to do is to prepare an ascending list of numbers.

— I don’t believe in this… Let’s start with the sum that is obviously greater than the Sacred Number and we’ll decrease one of the summand. So, we have more chances to avoid boilin… big problems.

Haven’t come to an agreement, the Brothers went away to their cells. By next day everyone of them has prepared a list of numbers that, to his opinion, could save them… Can both of the lists save them together?
Problem

- Your program should decide, if it is possible to choose from two lists of integers such two numbers that their sum would be equal to 10 000.

Input

- You are given both of these lists one by one. Format of each of these lists is as follows: in the first line of the list the quantity of numbers N_i of the i-th list is written. Further there is an i-th list of numbers each number in its line (N_i lines). The following conditions are satisfied: $1 \leq N_i \leq 50 000$, each element of the lists lays in the range from -32768 to 32767. The first list is ascending and the second one is descending.

Output

- You should write "YES" to the standard output if it is possible to choose from the two lists of integers such two numbers that their sum would be equal to 10 000. Otherwise you should write "NO".
Problem Description (3)

Sample

<table>
<thead>
<tr>
<th>Input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>4
-175
19
19
10424
3
8951
-424
-788</td>
<td>YES</td>
</tr>
</tbody>
</table>
Problem Description (4)

Time limit: 1.0 second

Memory limit: 64 MB

Problem Author: Leonid Volkov & Alexander Petrov

Problem Source: Ural State University Internal Contest
October 2000 Junior Session

Difficulty: 141
Solution #1

The solution is peaty straightforward.

The first obvious solution will be to go directly through arrays and compare values one by one in the nested loops.

However, the complexity for this solution will be $O(n^2)$. And that is far too slow to be able to pass all test cases.
Program’s Code #1

```python
n = int(input())
a = [int(input()) for x in range(n)]
m = int(input())
b = [int(input()) for x in range(m)]

for i in range(n):
    for j in range(m):
        if a[i] + b[j] == 10000:
            print("YES")
            exit(0)

print("NO")
```
Thus, we have to find more efficient way to solve this problem. We know that input array are sorted so this is a perfect situation for applying Binary Search which has great performance $O(\log n)$.

Binary Search: Search a sorted array by repeatedly dividing the search interval in half.
Therefore, overall we got the $O(n \log n)$ complexity because for each element in array b we run search. In the function $\text{check}()$ we are splitting second array to halves until the suitable pair number will be found or until array is ended.

This solution is fast enough to pass all test cases:
<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Author</th>
<th>Problem</th>
<th>Language</th>
<th>Judgement result</th>
<th>Test #</th>
<th>Execution time</th>
<th>Memory used</th>
</tr>
</thead>
<tbody>
<tr>
<td>7877150</td>
<td>18.44:35 9 May 2018</td>
<td>Serhii Bielik</td>
<td>1021. Sacrament of the Sum</td>
<td>Python 3.6</td>
<td>Accepted</td>
<td>0.982</td>
<td>2 348 KB</td>
<td></td>
</tr>
<tr>
<td>7877148</td>
<td>18.43.49 9 May 2018</td>
<td>Serhii Bielik</td>
<td>1021. Sacrament of the Sum</td>
<td>Python 3.6</td>
<td>Wrong answer</td>
<td>1</td>
<td>0.046</td>
<td>716 KB</td>
</tr>
</tbody>
</table>
Finally, we can improve the solution to make logic more clear.

This version runs slightly faster, probably because of reducing arithmetical operations.
n = int(input())
a = [int(input()) for x in range(n)]
m = int(input())
b = [int(input()) for x in range(m)]

def find(x):
 global n, m

 left = 0
 right = n - 1

 while left <= right:
 mid = int((left + right) / 2)
 if a[mid] == x:
 return True
 if a[mid] > x:
 right = mid - 1
 else:
 left = mid + 1

 return False

for i in range(m):
 if find(10000 - b[i]):
 print("YES")
 exit(0)
 print("NO")

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Author</th>
<th>Problem</th>
<th>Language</th>
<th>Judgement result</th>
<th>Test #</th>
<th>Execution time</th>
<th>Memory used</th>
</tr>
</thead>
<tbody>
<tr>
<td>7377390</td>
<td>23:51 on 9 May 2018</td>
<td>Serhii Bielik</td>
<td>1021: Sacrament of the Sum</td>
<td>Python 3.6</td>
<td>Accepted</td>
<td>0.873</td>
<td>3144 KB</td>
<td></td>
</tr>
</tbody>
</table>
The recursive implementation of Binary Search is slower than iterative version.
Thank You

😊