
ASSUMPTION UNIVERSITY

Vincent Mary School of Science and Technology

Department of Computer Science

1136 Parliament
Term Project Report

CS3201 Algorithm Design

ZHENG WANG 5826905

Semester 1/2018

Timus problem analysis and solution. [http://acm.timus.ru/problem.aspx?space=1&num=1136]

1

Content
PROBLEM DESCRIPTION .. 2

PROBLEM ANALYSIS ... 4

1. DATA CONSTRUCTION .. 4
2. INPUT READING .. 4
3. OUTPUT SOLUTION ... 4

RUNNING TIME ANALYSIS ... 5

PROGRAM IMPLEMENTATION.. 5
1. NODE .. 5
2. BINARYSEARCHTREE ... 5
3. INPUT AND OUTPUT .. 7

EXECUTION EXAMPLES .. 8

JUDGEMENT RESULT ... 8

2

Problem Description

Time limit: 1.0 second2
Memory limit: 64 MB

A new parliament is elected in the state of MMMM. Each member of the
parliament gets his unique positive integer identification number during the
parliament registration. The numbers were given in a random order; gaps in the
sequence of numbers were also possible. The chairs in the parliament were
arranged resembling a tree-like structure. When members of the parliament
entered the auditorium they took seats in the following order. The first of them
took the chairman’s seat. Each of the following delegates headed left if his
number was less than the chairman’s, or right, otherwise. After that he took the
empty seat and declared himself as a wing chairman. If the seat of the wing
chairman has been already taken then the seating algorithm continued in the
same way: the delegate headed left or right depending on the wing chairman’s
identification number.

The Figure 1 below demonstrates an example of the seating of the members of
parliament if they entered the auditorium in the following order: 10, 5, 1, 7, 20, 25,
22, 21, 27.

Figure 1

During its first session the parliament decided not to change the seats in the
future. The speech order was also adopted. If the number of the session was odd
then the members of parliament spoke in the following order: the left wing, the

3

right wing and the chairman. If a wing had more than one parliamentarian then
their speech order was the same: the left wing, the right wing, and the wing
chairman. If the number of the session was even, the speech order was different:
the right wing, the left wing, and the chairman. For a given example the speech
order for odd sessions will be 1, 7, 5, 21, 22, 27, 25, 20, 10; while for even sessions
— 27, 21, 22, 25, 20, 7, 1, 5, 10.

Determine the speech order for an even session if the speech order for an odd
session is given.

Input
The first line of the input contains N, the total number of parliamentarians. The
following lines contain N integer numbers, the identification numbers of the
members of parliament according to the speech order for an odd session.

The total number of the members of parliament does not exceed 3000.
Identification numbers do not exceed 65535.

Output
The output should contain the identification numbers of the members of
parliament in accordance with the speech order for an even session.

Sample

input output

9
1
7
5
21
22
27
25
20
10

27
21
22
25
20
7
1
5
10

Problem Source: Quarterfinal, Central region of Russia, Rybinsk, October 17-18 2001
Difficulty: 101

4

Problem Analysis

1. Data Construction

First, the way of parliament members choosing the seats is similar to Binary
Search Tree (BST).

BST Properties
Let x be a node in a BST.
If y is a node in the left subtree of x, then key[y]≤ key[x].
If y is a node in the right subtree of x, the key[x]≤key[y].

In other words, a subtree with root R, left child l, and right child r has
key[l]≤key[R]≤key[r].

The first of them who took the chairman’s seat is the root of the BST, and then the
other members took the seats following the logic of INSERT operation of BST. The
way of constructing data becomes clear now.

2. Input Reading

The way of tester giving the numbers is like giving the nodes in Post-order in BST.

Post-order (LRN)

1. Check if the current node is empty or null.
2. Traverse the left subtree by recursively calling the post-order function.
3. Traverse the right subtree by recursively calling the post-order function.
4. Display the data part of the root (or current node).

Therefore, the last number of input is the root of BST and previous numbers are
the children of it, and then the children of its children, and so on. Thus we can
insert the numbers of input in reverse, to the BST.

3. Output Solution

The required output is to print out the numbers in Right-Left-Parent order. So we
can implement it similar to another style of TREE-WALK of BST, following the order

5

of Right-Left-Parent.

Running time Analysis

In general cases, the running time of the INSERT part is O(log 𝑛). In worst case, the
running time will be O(𝑛2), when the numbers are contiguous ascending or
descending.

The running time of TREE-WALK is O(n) in all cases.

Program Implementation

1. Node
First, the class Node, has the field key to store the identification number of
parliamentarian, the field left point to its left parliamentarian whose
identification number is smaller than its, the field right point to its right
parliamentarian whose identification number is greater than its.
class Node{

 int key;

 Node left;

 Node right;

 public Node(int key){

 this.key = key;

 this.left = null;

 this.right = null;

 }

}

2. BinarySearchTree
Second, the class BinarySearchTree has the field root, which is the first Node
come into the tree, and the other operation method.

6

The method insert and _insert operate insertion of the BST. If the BST is
empty, set the current coming in Node, which is also the first Node as the root of
BST, otherwise, compare the coming in key with the current Node's key. If the
coming in key is smaller than or equal to the current Node's key then check the
current Node's left is empty or not, and check the current Node's right otherwise.
Then if the left or right is not empty, repeat check the coming in key with the
Node's key, until it is empty and allocate on there.

The method printRePost and _printRePost operate the tree walk technic
that deal with the output. First it will check if the BST is empty or not in case it has
runtime error with null type, then it start with the root and repeat check the
current Node's right is null or not, if not repeat, same as the current Node's left,
and then print it self's key.
class BinarySearchTree{

 private Node root;

 public BinarySearchTree(){

 this.root = null;

 }

 public void insert(int key){

 if(this.root == null){

 this.root = new Node(key);

 }else{

 _insert(this.root, key);

 }

 }

 public void _insert(Node currentN, int key){

 if(key <= currentN.key){

 if(currentN.left != null){

 _insert(currentN.left, key);

 }else{

 currentN.left = new Node(key);

 }

 }else{

 if(currentN.right != null){

 _insert(currentN.right, key);

 }else{

 currentN.right = new Node(key);

 }

7

 }

 }

 public void printRePost(){

 if(this.root != null){

 _printRePost(this.root);

 }

 }

 public void _printRePost(Node currentN){

 if(currentN != null){

 _printRePost(currentN.right);

 _printRePost(currentN.left);

 System.out.println(currentN.key);

 }

 }

}

3. Input and Output
Last, we read the input as the first line input N is the total number of Members of
Parliament, which is the length of array parlis that we store the numbers, then
repeat store the numbers to the array. Next we insert the numbers stored in
parlis to the tree which we defined as BinarySearchTree, so that it will
automatically construct the tree. Then print the tree in right, left , root order as it
required.
import java.util.Scanner;

public class Parliament {

 static Scanner s = new Scanner(System.in);

 static BinarySearchTree tree = new BinarySearchTree();

 public static void main(String[] args) {

 int N = s.nextInt();

 int[] parlis = new int[N];

 for(int i = 0; i<N; i++){

 parlis[i] = s.nextInt();

 }

 for(int n = N-1; n>= 0; n--){

 tree.insert(parlis[n]);

 }

 tree.printRePost();

 s.close();

8

 }

}

Execution Examples

Test Case: 9 1 7 5 21 22 27 25 20 10
(The same as the sample in project description)

Test Result:
Show as Figure 2.

Figure 2

Judgement Result

Show as Figure 3.

Figure 3

