## 1295. Crazy Notions

Tanapat L. 6014216
Aung Hlaing Moe 5745402

## $1^{n}+2^{n}+3^{n}+4^{n}$.

How much zeros does its decimal notation end with?

100 answer is 2
640 answer is 1
999 answer is o

## Input

The only line contains an integer $n(1 \leq n \leq 300000)$.

## Output

Output the number of zeroes the decimal notation of $1^{n}+2^{n}+3^{n}+4^{n}$ ends with.

## Samples

| input | output |
| :--- | :--- |
| 1 | 1 |
| 3 | 2 |

## My first attempt

```
n = input()
x = 1**int(n) + 2**int(n) + 3**int(n) + 4**int(n)
arr = list(str(x))
count = 0
for i in range(len(arr)-1,-1,-1):
    if arr[i] == '0':
        count += 1
        else:
        break
    print(count)
```


## Running Time of My first attempt

$$
\begin{gathered}
2^{* *} \mathrm{n}=2^{*} 2^{*} 2^{*} \ldots \ldots \ldots 2 \\
\mathrm{n} \\
2^{* *} \mathrm{n}+3^{* *} \mathrm{n}+4^{* *} \mathrm{n}=3 \mathrm{n}
\end{gathered}
$$

1
2
3
4
5
6 7

11
12
13
print("time:",end-start)

$$
2^{* *} n+3^{* *} n
$$

## $\mathrm{n}=1000000 \quad \mathrm{n}=100000$

369385748873959648658182738283436617900770000600931379426158877713 099427265183032299511930882689573149205637715923028682912652024874 480878785688594572122782107449889186870829664812138695809058058586 77
time: 6.886989593505859 320853458911950460112424860475 time: 0.08600139617919922

## Thank you for hint

```
Posted by Md. Shahedul Islam (Shahed) 13 Aug 2015 15:15
if {(1^n + 2^nn+ 3^n + 4^n) % 10} is equal to 0, then we find 1 zero.
if {(1^n + 2^n + 3^n + 4^n) % 100} is equal to 0, then we find 2 zeros.
and so on....
now, how to calculate {(1^n + 2^n + 3^n + 4^n) % 10}:
Look,
{(1^n + 2^n + 3^n + 4^n) % 10}
=((1^n % 10) +(2^n % 10) +(3^n % 10) + (4^n % 10)) % 10 [simple modulo equivalencies]
now,
(4^n % 10)
= ((((((4%10)*4)%10)*4)%10)*4)%10 . . . . . . (n times) [(4%10), then multiply by 4, then mod 10, loop for n times]
similarly for ( }\mp@subsup{2}{}{\wedge}n%10)\mathrm{ and ( }\mp@subsup{3}{}{\wedge}\textrm{n}%10). No need for 1, because ( 1^n % 10) is always 1.
In this way, calculate the rusult of {(1^n + 2^n + 3^n + 4^n) % m} for m = 10, 100, ans so on... and count zeros... :)
```

$\mathrm{n}=$ input()

```
cal1 = cal2 = cal3 = cal4 = 1
```

for i in range(int(n)):
cal2 $=($ cal2*2)\%100
cal3 $=($ cal3*3)\%100
cal4 $=($ cal4*4) $\% 100$
x = cal1+cal2+cal3+cal4
arr $=$ list(str(x))
count $=0$
for i in range(len(arr)-1,-1,-1):
if arr[i] == ' $\theta^{\prime}$ :
count += 1
else:
break
print(count)

$$
\begin{aligned}
2^{* *} 2 & =4 \\
2^{* *} 22 & =\ldots .04 \\
3^{* *} 1 & =3 \\
3^{* *} 21 & =\ldots .03
\end{aligned}
$$

22
$\mathrm{n}=02$
$n=03$
$n=04$
$n=14$
$n=19$
$n=116$

