
CS3201 Algorithm Design

Term Project
MADE BY :

NAVIN SINGH 5935221

WILLIAM POCH 5938122

ACM.Timus .ru1017. Staircases

Difficulty:157

One curious child has a set of N little bricks (5 ≤ N ≤ 500). From these bricks he builds
different staircases. Staircase consists of steps of different sizes in a strictly descending

order. It is not allowed for staircase to have steps equal sizes. Every staircase consists

of at least two steps and each step contains at least one brick. Picture gives

examples of staircase for N=11 and N=5:

Your task is to write a program that reads the number N and writes the only

number Q — amount of different staircases that can be built from exactly N bricks.

Input and Output

 Input

Number N

 Output

Number Q

How did we solve this problem

This problem asks us to build a staircase with N number of bricks.

The staircases must consist of steps of different sizes in decreasing order.

To solve this problem we will use dynamic programming.

One method to solve this problem is to utilize a bottom-up approach.

This method consists of looping through a multi-dimensional array (2D or 3D),

starting from the base cases.

Bottom Up Approach

 Going bottom-up is a way to avoid recursion, saving the memory cost that

recursion incurs when it builds up the call stack.

 Put simply, a bottom-up algorithm "starts from the beginning," while a

recursive algorithm often "starts from the end and works backwards."

 Even though in bottom up all states are visited but recursion eats a lot of

memory using top down

This is the Bottom Up Approach

Output using Bottom Up Approach

Reference

 Code by Jeremy Tuloup: https://jtp.io/2016/07/26/dynamic-programming-

python.html?fbclid=IwAR0q5eQR4zeWoSAQ59t711yCmVZSwY_XkyukvMVG

G9xYlYvLIjZ8u_J2R9Q

 Timus Problem: http://acm.timus.ru/problem.aspx?space=1&num=1017

https://jtp.io/2016/07/26/dynamic-programming-python.html?fbclid=IwAR0q5eQR4zeWoSAQ59t711yCmVZSwY_XkyukvMVGG9xYlYvLIjZ8u_J2R9Q
http://acm.timus.ru/problem.aspx?space=1&num=1017

1017.Staircases

Smith S. 5613456
Pitpiboon P. 5815887

Question
One curious child has a set of N little bricks (5 ≤ N
≤ 500). From these bricks he builds different
staircases. Staircase consists of steps of different
sizes in a strictly descending order. It is not allowed
for staircase to have steps equal sizes. Every
staircase consists of at least two steps and each step
contains at least one brick.

Time limit: 1.0 second

Memory limit: 64 MB

Example

Picture gives examples of staircase for N=11 and
N=5:

prev = number of bricks you have set on
previous column

remain = number of remaining bricks

if remain = 0, then you have got a
solution

if remain <= prev, then you cant get a
solution

if you had come to this point before
then don't calculate one more time, just
return the previous calculated result

Now you are trying to fill up the current
column with every possible number of bricks

Obviously started from prev + 1 to <= remain

prev = 0, remain = n

dp (0, n) gives the final result

but solutions with one column not
acceptable so we subtracted 1 from the
final result

A

A

B
B

C

C

D D

How It works
n=5

1 and 4

2 and 3

0 and 5 (unacceptable)

3 -1 = 2 result

Result

Reference

http://acm.timus.ru/problem.aspx?
space=1&num=1017

https://tausiq.wordpress.com/2011/06/16/
timus-1017-staircases/ by SHAHAB

http://acm.timus.ru/problem.aspx?space=1&num=1017
http://acm.timus.ru/problem.aspx?space=1&num=1017
https://tausiq.wordpress.com/2011/06/16/timus-1017-staircases/
https://tausiq.wordpress.com/2011/06/16/timus-1017-staircases/

Code
//https://tausiq.wordpress.com/2011/06/16/timus-1017-staircases/
//shahab
#include <iostream>
#define LL long long
LL memo [501] [501];

void reset ()
{
 for (int i = 0; i < 501; i++)

 for (int j = 0; j < 501; j++) memo [i] [j] = -1;
}

LL dp (int prev, int remain)
{
 if (remain == 0) return 1;
 if (remain <= prev) return 0;
 if (memo [prev] [remain] != -1) return memo [prev] [remain];

 LL ret = 0;
 for (int i = prev + 1; i <= remain; i++)
 {
 ret += dp (i, remain - i);
 }
 //printf("%d prev\n",prev);
 //printf("%d remain\n",remain);
 return memo [prev] [remain] = ret;
}

int main ()
{
 int n;
 while (scanf ("%d", &n) != EOF) {
 reset ();
 printf ("%lld\n", dp (0, n) - 1);
 }
 return 0;
}

