Assumption University

Faculty of Engineering

Semester 1/2018

CE3111 Design And Analysis of Algorithms Term Project

1756 One and a Half Digger
(Timus Online Judge)

Submit to
Asst. Prof. Dr. Thitipong Tanprasert

Problem :

Vitya Perestukin is solving the following problem: Three diggers can dig a trench in exactly one day. How many diggers are needed to dig the same trench in exactly two days? Vitya has concluded that one and a half diggers are needed. But there can't be such an answer. Actually, two diggers are needed: on the first day only one digger will work, and on the second day they both will work.
It is known that m diggers can dig a trench in exactly d1 days if they all work every day. Help Vitya compile a work schedule according to which a minimal number of diggers can dig a trench in exactly d2 days.
Difficulty: 162

Input

The only input line contains the integers $\mathrm{m}, \mathrm{d} 1$, and $\mathrm{d} 2(1 \leq \mathrm{m}, \mathrm{d} 1, \mathrm{~d} 2 \leq 10000)$.

Output

In the only line output d2 integers, which are the numbers of diggers that should work on each of the days so that the trench will be dug in time. It is possible that on some days (including the last day) nobody will work. If there are several solutions, output any of them.

Sample

input	output	
312	12	

Problem Solution:

```
import sys
2
x = input().split()
m = int(x[0])
d1 = int (x[1])
d2 = int (x[2])
if m <1:
    sys.exit()
if d1 & d2 >= 10000:
        sys.exit()
for_one_day = m*d1
mini_worker = for_one_day/d2
max_worker = (for_one_day+d2-1)/d2
max_worker_day_count = for_one_daysd2
print('max_worker_day ',max_worker_day_count)
mini_worker_day_count = d2 - max_worker_day_count
print('mini_worker_day',mini_worker_day_count)
for i in range(max_worker_day_count):
    print('max_worker',int(max_worker))
for j in range(mini_worker_day_count):
    print('mini_worker',int(mini_worker))
```

Line 13: I calculated Maximum Work Power to finish the job
Line 15: Calculation Minimum worker need for a day for d2
Line 16: Calculation Maximum worker for a day for d2
Line 18: Maximum worker working day
Line 19: Minimum worker working day

Test Cases:

```
[ }->\mathrm{ Algorithm class python3 onehalfdiggers.py
3 2
max_worker_day 1
mini_worker_day 1
max_worker 2
mini_worker 1
```

```
\rightarrow ~ A l g o r i t h m ~ c l a s s ~ p y t h o n 3 ~ o n e h a l f d i g g e r s . p y ~
```

\rightarrow ~ A l g o r i t h m ~ c l a s s ~ p y t h o n 3 ~ o n e h a l f d i g g e r s . p y ~
3 3 6
3 3 6
max_worker_day 3
max_worker_day 3
mini_worker_day 3
mini_worker_day 3
max_worker 2
max_worker 2
max_worker 2
max_worker 2
max_worker 2
max_worker 2
mini worker 1
mini worker 1
mini_worker 1
mini_worker 1
mini_worker 1

```
mini_worker 1
```

```
A Algorithm class python3 onehalfdiggers.py
5 6
max_worker_day 1
mini_worker_day 5
max_worker 5
mini_worker 4
mini_worker 4
mini_worker 4
mini_worker 4
mini_worker 4
```

\rightarrow Algorithm class python3 onehalfdiggers.py
329
max_worker_day 6
mini_worker_day 3
max_worker $\overline{1}$
max_worker 1
max_worker 1
max_worker 1
max_worker 1
max_worker 1
mini_worker 0
mini_worker 0
mini_worker 0

Submission Result:

Problem: 1756
Language :Python 3.6
Execution time:0.109
Memory used: 608 KB

ID	Date	Author	Problem	Language	Judgement result	Test \#	Execution time	Memory used
$\underline{8153641}$	21:44:03 28 Nov 2018	winshaine	1756. One and a Half Diggers	Python 3.6	Accepted		0.109	608 KB

