
Algorithm Design >>
1846. GCD 2010

6118149 heesun choi

Overview

1846. GCD 2010

Time limit: 0.5 second

Memory limit: 64 MB

Difficulty: 149

The problem

You have got a job offer from a secret project of the Agency of

Federal Security under the code name “GCD 2010”. The subject of

research is a collection of positive integer numbers. Your goal is to

calculate how the greatest common divisor of all numbers in this

collection changes as we insert numbers into this collection and

remove them from it. At the beginning of the experiment, the

collection is empty.

Input

The first line contains an integer q (1 ≤ q ≤ 105), which is the

number of operations with the collection. Each of the next q lines

has either the form “+ x” or “- x”. In the first case, number x is

inserted into the collection, in the latter case it is removed from the

collection. The number x is a positive integer not exceeding 109. It is

guaranteed that operations remove only the integers which lie in

the collection.

Output

Output the greatest common divisor of all numbers in the

collection after each of the given operation.

According to the 190R order, the greatest common divisor of an

empty collection is equal to one.

Sample
case 1. Input

5

+ 8

+ 6

+ 8

- 8

- 8

 Output

8

2

2

2

6

case 2. Input

9
+ 10
+ 10
+ 10
- 10
- 10
+ 5
- 10
- 5
+ 123

 Output

10
10
10
10
10
5
5
1
123

Code
import sys

def gcd(x,y):

 while(y):

 x, y = y, x % y

 return x

def add (val, pos, node, start, end):

 global t

 if start == end and start == pos:

 tree[node] = val

 else:

 mid = (start+end) >> 1

 if pos <= mid:

 add(val, pos, node*2, start,

mid)

 else:

 add(val, pos, node*2+1, mid+1,

end)

 tree[node] =

gcd(tree[node*2],tree[node*2+1])

for i in range(num):

 temp = sys.stdin.readline().split()

 inp[i][0] = inpcopy[i][0] = int(temp[1])

 inp[i][1] = inpcopy[i][1] = temp[0]

 inp[i][2] = i

inp.sort(key = lambda x:x[0])

for i in range(num):

 if default != inp[i][0]:

 k+=1

 default = inp[i][0]

 inpcopy[inp[i][2]][2] = k

for i in range(num):

 position = inpcopy[i][2]

 if inpcopy[i][1] == '-':

 if count[position] ==1:

 remove(position,1,1,num)

 count[position] -= 1

 size -= 1

 else:

 count[position] += 1

 if count[position] ==1:

 add(inpcopy[i][0],position,1,1,num)

 size += 1

 if size == 0:

 tree[1] = 1

 print(tree[1])

def remove(pos, node, start, end):

 if start == end and start == pos:

 tree[node] = 0

 else:

 mid = (start+end) >> 1

 if pos <= mid:

 remove(pos, node*2, start, mid)

 else:

 remove(pos, node*2+1, mid+1,

end)

 tree[node] =

gcd(tree[node*2],tree[node*2+1])

k=0

size =0

default = -1

num = int(sys.stdin.readline())

inp = [[0 for col in range(3)] for row in

range(num)]

inpcopy = [[0 for col in range(3)] for row

in range(num)]

count = [0] * 100000

tree = [0] * (num * 4)

Euclidean-algorithm
method of obtaining GCD

GCD(A,B) = GCD(B, A%B)

GCD(A,B,C) = GCD(GCD(A,B),C)

[a > b, a % b = n]

If n == 0:

gcd = b

If n != 0:

a=b; b=n;

gcd(a,b)

http://lonpeach.com/2017/11/12/Euclidean-algorithm/

Segment tree
algorithm -binary tree

Store array elements on each leaf node and its parent node stores the gcd values

of the child nodes. Finally, the root node stores the gcd value of the entire array.

Arrange the input arrays in ascending order and assign the same mark to

elements(inp[][3]) with the same number. The mark is used as the index

of the tree.

cout array stores the number of duplicate numbers and add / remove

those numbers to the tree only at the beginning(count[] == 1) / the

end(count[] == 1).

idea

Result

Reference

https://gist.github.com/wil93/47f9b7f8c409bf9de2c9 - idea

https://www.geeksforgeeks.org/segment-tree-set-1-sum-of-give

n-range/ - algorithm

25 22

https://gist.github.com/wil93/47f9b7f8c409bf9de2c9
https://www.geeksforgeeks.org/segment-tree-set-1-sum-of-given-range/
https://www.geeksforgeeks.org/segment-tree-set-1-sum-of-given-range/

