

CS 3201 Algorithm Design 1/2020
6118135 Jan Duldhardt

Term Project
Rotting Oranges

Content
1. Introduction
2. Question
3. The approach
4. Code
5. Analysis
6. Comments
7. References

Introduction
The reason why I have selected this problem is because last year I applied for some internships at
big tech companies and I knew that they are having this kind of data structures and algorithm coding
interview. At that time I was still taking the course Data Structures and Algorithms so I was very
inexperienced with how to solve this kind of problem. At that time I had no idea about something like
BFS so solving this problem was almost impossible for me at that time, I could not wrap my head
around it.

So after completing Data Structures and Algorithms and learning how to implement BFS in this
Algorithm Design course I wanted to give this problem another try and see if what I have learned so
far can help me solve the question I struggled one year ago with.

Question

I think the description of the question is very clear.
We need to return the number of minutes it takes for all oranges to be rotten if it is not possible
because an orange is not adjacent to any rotten orange. We have to return -1.
Also in case there is no fresh orange to begin with we return 0 (=> 0 minutes).

The approach
Even though my code should be easy to understand I will quickly go through it.
First we have the rottenlist which contains the points of oranges which are rotten as a tuple
(row,col) and a counter minutes to count the iterations.
Then we go through the grid once to get all the initial rotten oranges and save them to our rottenlist.
After that we have our loop while rottenlist is not empty we want to replace our current rottenlist
with the new rottenlist which are the adjacent fresh oranges of all the rotten oranges in our rottenlist.
For that I just define the method getAdj which gets the grid and the rottenlist as a parameter.
In that method I just check if the adjacent positions are valid and not out of bounds and after that
check if the adjacent is a fresh orange, and if so the orange is now rotten and appended to the
rottenlist for the next iteration.
Now let's go back to the main while rottenlist != [] after we get the new rottenlist we need to check if
this rottenlist is not empty and if so we increase the counter.
The last thing we have to do before returning minutes is to check whether or not there is still a fresh
orange in the grid left, this can only happen if there was no connection between a rotten orange and
the remaining fresh one as in Example 2.
If no fresh one is found we can return minutes.

Code

def getAdj(grid, rotten):
 adj = []

 for point in rotten:
 row = point[0]
 col = point[1]
 directions = [(1,0),(0,1),(-1,0),(0,-1)]
 for direction in directions:
 newrow = row + direction[0]
 newcol = col + direction[1]
 if newrow >= 0 and newrow < len(grid) and newcol >= 0 and newcol <
len(grid[0]) and grid[newrow][newcol] == 1:
 point = newrow, newcol

 grid[newrow][newcol] = 2
 adj.append(point)

 return adj

class Solution:

 def orangesRotting(self, grid: List[List[int]]) -> int:
 rottenlist = []

 minutes = 0

 for i in range(len(grid)):
 for j in range(len(grid[i])):
 if grid[i][j] == 2:
 rottenlist.append((i,j))

 while rottenlist != []:
 rottenlist = getAdj(grid,rottenlist)

 if rottenlist:
 minutes += 1

 for i in range(len(grid)):
 for j in range(len(grid[i])):
 if grid[i][j] == 1:
 return -1

 return minutes

Analysis

As we can see in the statistics my running time is better than 73% of other peoples python code
and my memory usage is better than 100% of peoples python code.

But if we analyse the asymptotic runtime complexity of my solution we can notice that it is
actually the optimal solution.
Let's say our grid length (row * col) is denoted as n
Then we have O(n) and because every change is saved in the initial grid we get a space
complexity of O(1).

Time complexity: O(n) where n is the length of the grid (row * col)
Space complexity: O(1)

Comments
This question actually comes from a real interview question from Amazon. In my opinion the
question in general is not too difficult if you are familiar with BFS but in this case there are a lot
of edge cases that need to be considered. Also the space complexity because in class we
learned to always use a new class for the state but in this case we can just use the grid to save
the information. All in all this question was challenging to get the optimal solution and I am
happy that the knowledge I have learned the past year about Data Structures and Algorithms
and Algorithm Design has bared fruits.

References
https://leetcode.com/problems/rotting-oranges/

https://leetcode.com/problems/rotting-oranges/

