
ALGORITHMS DESIGN PROJECT 1/2020

BY APITSARA CHOPPRADIT ID: 5710497

1167. BICOLORED HORSES

QUESTION

Every day, farmer Ion (this is a Romanian name) takes out all his horses, so they may run and play. When they are done, farmer Ion
has to take all the horses back to the stables. In order to do this, he places them in a straight line and they follow him to the stables.
Because they are very tired, farmer Ion decides that he doesn't want to make the horses move more than they should. So he
develops this algorithm: he places the 1st P1 horses in the first stable, the next P2 in the 2nd stable and so on. Moreover, he doesn't
want any of the K stables he owns to be empty, and no horse must be left outside. Now you should know that farmer Ion only has
black or white horses, which don't really get along too well. If there are i black horses and j white horses in one stable, then the
coefficient of unhappiness of that stable is i*j. The total coefficient of unhappiness is the sum of the coefficients of unhappiness of
every of the K stables.

Determine a way to place the N horses into the K stables, so that the total coefficient of unhappiness is minimized.

QUESTION
Input
On the 1st line there are 2 numbers: N (1 ≤ N ≤ 500) and K (1 ≤ K ≤ N). On the next N lines there are N numbers. The i-th of these
lines contains the color of the i-th horse in the sequence: 1 means that the horse is black, 0 means that the horse is white.

Output
You should only output a single number, which is the minimum possible value for the total coefficient of unhappiness.

Sample

Input Ouput

6 3

1

1

0

1

0

1

2

TECHNIQUES TO SOLVE

▪ To solve this problem, I choose to use the greedy algorithms and recursion as the techniques to solve ‘Bicolored Horse’ problem.

▪ I have used the recursion technique to find the combination of all possible ways to place ‘n’ horse in ‘k’ stable without any left

empty stable.

▪ For example; n = 6, k = 3 ---->[[2, 1, 3], [1, 1, 4], ……….]

▪ The greedy algorithms to find the minimum possible value for total coefficient of unhappiness of horses of all ‘k’ stable. To use

the greedy algorithms, I have divided the one big problem to many small sub-problems and solve one-by-one to follows greedy

method to solving problem heuristically of making the locally optimal choice at each sub-problem.

▪ Since, I do not have the need to revise the previous choice exclude the getting combination of all ways to place ‘n’ horse in ‘k’

stable. It is more efficient in terms of memory as it never look back or revise previous choices and computes the solution by

making its choices in a serial forward fashion.

ONE BIG PROBLEM TO MANY SUB-PROBLEMS

 I have taken apart the ‘Bicolored Horse’ problem into many sub-problems to follow the greedy method like this.

 Sub-problem 1: Generate all combinations of all possible ways to place ‘n’ horse in ‘k’ stable without any left empty stable.

(Recursion)

 Sub-problem 2: Check if each combination in the list are equal to total ‘n’ horse.

 Sub-problem 3: Placing the inputted black & white horse sequence into the list by slicing the sequence based on

combinations from sub-problem2. In order to find the placed horse sequence in ‘k’ stable of all possible ways.

 Sub-problem 4: Find the total number of black & white horse in each placed sequence of each possible ways in each stable.

 Sub-problem 5: Find the coefficient of unhappiness of each stable in each possible way.

 Sub-problem 6: Find the minimum possible value of total coefficient of unhappiness of all stable from all possible ways.

1. GETTING AN INPUT AND PREPARE INPUTTED DATA

 The forth line of code to get the input data into .py file and store it into
’inputs’ list

 ‘n’ = The total number of horses both of black & white horses. (Line 6)

 ‘k’ = The total number of stables that need to place horses. (Line 7)

 ‘seq’ = Keep the inputted sequences of black & white horses as a list. (Line
8)

 ‘options’ = Empty list create to store the options to place horses according
to each option. (Line 9)

 ‘combi’ = Empty to store all generated combinations of all possible ways of
place horses. (Line 10)

 ‘maxc’ = To find the maximum no of horse should be place because all
stables cannot be empty and therefore must at least put one horse in one
stable, so in one stable cannot put horse more than n-(k-1). (Line 12)

 Line 14-16: To run loop and append the input sequence into ‘seq’ list.

 Line 18-19: To run loop and append options to place horses based on
‘maxc’ value into ‘options’ list.

2. SUB-PROBLEM 1

Generate all combinations of all possible ways to
place ‘n’ horse in ‘k’ stable without any left empty
stable. (Recursion)

‘options’ as a list that contain possible elements to
generated combination.

‘k’ as the length of each combination.

▪ Line 21-23: The ‘printAllKLength()’ function to get the size of a passed set/list and It is mainly a wrapper over recursive function

‘printAllKLengthRec()’. This function pass a set/list ‘set’ and integer value ‘kk’ as parameters.

▪ Line 25-31: The ‘printAllKLengthRec()’ function to is the main recursive method to print all possible strings of length ‘kk’ as act as base

case(‘kk’ == 0) to append ‘prefix’ into ‘combi’ list and return nothing. And the for loop choose the next character of input added from

‘set’ according to index ‘i’ and run the recursion until ‘kk’ = 0 since ‘kk’ is decreased, because a new character added.

▪ Line 33: Run the ‘printAllKLengthRec()’ function and pass ‘options’ list and ‘k’ value as parameters to perform he function and the

element in ‘combi’ list will be string value.

3. SUB-PROBLEM 2

Check if each combination in the list are equal to
total ‘n’ horse.

‘combi’ keep all possible combinations based on
‘options’ in list in the form of string element list.

‘b_list’ as temporary list to store the list elements as
sub-list in one big list.

▪ Line 35: Pass list variable in ‘the_list’ parameter of ‘convert_check()’ function.

▪ Line 36-39: Create a temporary list ‘a_list’ to convert elements in ‘the_list’ from string value to int value in the foe loop and

choose for one combination (Line 38) and append the result converted ‘digits’ to ‘a_list’ object.

▪ Line 41-45 : Create a temporary list ‘b_list’ to compute the sum of each combination(‘a_list[i]’) and check condition if the sum is

equal to ‘n’ value (Total number of horse). If so, then append ‘a_list[i]’ combination and the ‘convert_check()’ function

▪ Line 48: ‘pos_ways’ to store the return list from running ‘convert_check()’ function which pass ‘combi’ as parameter.

4. SUB-PROBLEM 3

Splitting and Placing the inputted black & white
horse sequence (‘seq’ list) into the list by slicing the
sequence by length that get from the elements of
sub-list of combination list(‘pos_ways’) from sub-
problem2.

In order to find the placed horse sequence in ‘k’
stable of all possible ways.

▪ Line 50: To import function ‘islice()’ from itertools library into .py files.

▪ Line 52-60: The ‘split_horse()’ function to run the while loop to crate an iterator object with ‘the_list’ list before slice the ‘the_list’

list with islice() function that start from ‘the_list_iter’ and stop at the ‘length’ which get by choosing one element from ‘combi_list’

list. The sequence will get slice based on combination of one way which will be out in the new list(‘re2’). Then, the ‘re2’ list will get

append into ‘result_list’ which is a temporary list and is return from function as a list object.

▪ Line 62: ‘re_seq’ to store the return list from running ‘split_horse()’ function which pass ‘seq’ list and ‘pos_ways’ list as parameter.

5. SUB-PROBLEM 4

Find the total number of black & white
horse in each placed sequence of each
possible way in each stable.

▪ Line 64-73: Run the ‘find_bw()’ to find the total number of black & white horse in one

stable of one combination. If elements of sub-list (‘the_list’[i]) == 0, then ‘white’ increase. If

elements of sub-list (‘the_list’[i]) == 1, then ‘black’ increase. Then get ‘white’ and ‘black’ in

the form of tuple objects and return ‘s’ from ‘find_bw()’ function.

▪ Line 75-79: Run the ‘find_bw2()’ as wrapper to run ‘find_bw()’ by the number of stable

times (meaning if there are 3 stable in one sequence of one possible way then ‘find_bw()’

will run 3 times). The tuple object ‘s2’ as a result of running ‘find_bw()’ will substitute the

element of ‘the_list2’ at the index ‘i’ and the ‘find_bw2()’ will return a list object.

▪ Line 81: ‘no_of_horse’ list object is created to store all number of black & white horses in

each stable of all sequences of all possible ways.

▪ Line 83-85: The for loop to run ‘find_bw2()’ function at all sequences of all possible ways

(meaning if there are 10 possible ways, ‘find_bw2()’ will run10 times) and the result ‘go’

will be append to ‘no_of_horse’ list object.

6. SUB-PROBLEM 5

Find the coefficient of unhappiness of each stable in
each combination.

By compute ‘t1’ * ‘t2’ to find the coefficient of
unhappiness of each stable.

‘tu’ as list object that store number of white & black
horse of each stable in one possible ways.

‘t1’ = no. of white horses, ‘t2’= no. of black horses

▪ Line 87-93: The ‘mul_co()’ function that have a for loop to get the tuple

value that store no of white & black horses in one stable of one possible

way. Then store in ‘tu’, and then get ‘t1’ and ‘t2’ by state the position of

needed element in ‘tu’ list object. Later, compute the coefficient of

unhappiness in one stable by ‘t1’ * ‘t2’ and substitute at the same index ‘i’

in ‘the_list’ list and ‘mul_co()’ function return list object.

▪ Line 95: The ‘coef_in_stable’ is created to store coefficient of unhappiness

in one stable of all stable for all possible ways. This list object is created by

the length of ‘no_of_length’ list object, since there are no change in the

length of list from ‘no_of_horse’ list.

▪ Line 97-99: The for loop to run ‘mul_co()’ function in length of

‘no_of_horse’ times and store the result ‘ko’ in the same index ‘i’ of

‘no_of_horse’ in ‘coef_in_stable’ list object.

7. SUB-PROBLEM 6

Find the minimum possible value of total coefficient of
unhappiness of all stable from all possible ways.

▪ Line 101: To set ‘max_value’ as the maximum value from sys.maxsize.

▪ Line 103-111: The ‘coef_unhappi()’ function begin with setting the

‘minimum’ as the maximum value. Run the first for loop for execute code

in the loop for all possible ways ‘j’ times and create ‘sums’ to keep the sums

of all stables’ coefficient of unhappiness.

▪ The second for loop to add the coefficient of unhappiness of all stable

in one possible ways to ‘sums’.

▪ And substitute the ‘sums’ at the same index ‘j’ in ‘the_list’ object and

find minimum value of coefficient of unhappiness of all possible ways

to place ‘n’ horses in ‘k’ stable. And ‘coef_unhappi()’ return minimum

value.

▪ Line 113: Printout the minimum possible value for the total coefficient of

unhappiness by running ‘coef_unhappi()’ function.

EXECUTION TIME ON MY LAPTOP

RESULT FROM TIMUS ONLINE JUDGE

REFERENCE

 https://www.geeksforgeeks.org/print-all-combinations-of-given-length/

https://www.geeksforgeeks.org/print-all-combinations-of-given-length/

