
LEETCODE 189.
ROTATE ARRAY

Difficulty:
Medium

Dao Trung Kien - 6128302
Sochivoath Chiv - 6128304

TABLE OF
CONTENTS

CONCLUSION
Last words about the problem
and attempt

PROBLEM DESCRIPTION
A brief introduction of the
problem

PROBLEM ANALYSIS
Analyze the problem to get
more information

SOLUTIONS
5 possible ways to solve the
problem using python

01

02

03

04

A brief introduction of the
problem

PROBLEM
DESCRIPTION01

!

THE
QUESTIONS

Example 1:

Input: nums = [1, 2, 3, 4, 5, 6, 7], k =3

Output: [5, 6, 7, 1, 2, 3, 4]

Explanation:
Rotate 1 step(s) to the right : [7, 1, 2, 3, 4, 5, 6]
Rotate 2 step(s) to the right : [6, 7, 1, 2, 3, 4, 5]
Rotate 3 step(s) to the right : [5, 6, 7, 1, 2, 3, 4]

Example 2:

Input: nums = [-1, -100, 3, 99], k = 2

Output: [3, 99, -1, -100]

Explanation:
Rotate 1 step(s) to the right : [99, -1, -100, 3]
Rotate 2 step(s) to the right : [3, 99, -1, -100]

Constraints:

● 1 ≤ nums.length ≤ 2*104

● -231 ≤ nums[i] ≤ 231 - 1
● 0 ≤ k ≤ 105

Given an array, rotate the
array to the right k steps
where k is a non-negative
number

Analyze the problem to get
more information

PROBLEM
ANALYSIS02

!

THE
ANALYSIS

● The problem is very short and
straightforward with the only gimmick
being that the original array has to be
rotated

● The output is NOT a new array

● The simplicity of the problem signifies that
there are multiple different solutions.
Instead of just solving, we will explore
different techniques in order to find the
most optimal solution.

5 possible ways to solve the
problem using python

SOLUTIONS 03
!

BRUTE
FORCE

Brute force algorithms can act as a
benchmark or starting point to study issues
and look for areas of improvement

THE
CODE

THE
RESULTS

Testing with simple sample data within the console shows the
following results:

From these results, we can conclude that the brute force
technique works as intended, however it does not pass the time
limit set by the question

COMPLEXITY
ANALYSIS

● After analyzing the code, we can see
that the inner loop goes through each
digit of the array (n), and the outer
loop repeats this k times. The time
complexity is then concluded to be
(O(n) x k) = O(n x k)

● The space complexity is only O(1) as no
extra space is used.

EXTRA
ARRAY

Attempts to reduce number of loops. Uses
extra array to be filled with the rotated
values. Array is copied back into original
array.

THE
CODE

THE
RESULTS

The submission result shows that, unlike the previous algorithm,
the use of the extra array and the optimization to the use of only
one loop has allowed the program to be accepted without
exceeding the time limit.

COMPLEXITY
ANALYSIS

● As we are using only one loop (that
loops through all elements in the
nums array), we can conclude that the
time complexity is O(n).

● In exchange for a faster runtime, we
sacrifice memory space by creating a
completely new array with the same
length of O(n).

CYCLIC
REPLACEMENTS

Attempts to reduce the extra space from
O(n) to O(1) by utilizing only one temp
variable to store the number being replaced
rather than saving an entire array

THE
CODE

K = 2 654321

3

1

5

35

21 4

2

6

46

THE
RESULTS

The results show that the runtime of the algorithm remained
exactly the same as with the extra array method, however the
memory usage of is much lower as we store only 1 extra variable
at all times.

COMPLEXITY
ANALYSIS

● Despite the code containing nested
loops, the running time of the
algorithm remains O(n).

● Each element is passed over only once.

● Only 1 extra variable regardless of the
size of the array,

● The space complexity is reduced to
O(1).

USING
REVERSALS

Another approach utilizes the reversal of
arrays in order to place them correctly

THE
CODE

THE
RESULTS The submission shows that the algorithm is slightly faster than the

previous techniques, however, this 4ms is admissible. The memory
usage was also the same as the cyclic replacement algorithm.

COMPLEXITY
ANALYSIS

● The time complexity remains O(n) as n
elements are reversed a total of 3
times.

● The space complexity also remains
O(1) as no extra space is ever used. The
function calls may add some memory
overhead.

Slicing Utilizes the slices, where we slice the array
into 2 segments and swap the position of
these segments to produce a rotated array

THE
CODE

THE
RESULTS From the figure above, we can see that this approach shares the

same memory usage as the previous 2 algorithms, however, this
approach is significantly faster than the previous approaches

COMPLEXITY
ANALYSIS

● As the approach utilizes slicing by
direct reference to index rather than
looping through the arrays, regardless
of the size of the array, the time
complexity is O(1) constant time.

Last words about the problem
and attempt

CONCLUSION04
!

LAST
WORDS EFFICIENCY

From the most intuitive method (brute force), we
have incrementally improved each solution. Finally,
we have successfully reduced the both time
complexity and space complexity from O(n) to
constant time O(1).

EXPERIENCE
We explore multiple approaches to the same
problem: rotating an array in place. Despite the
question being relatively simple and
straightforward, it has allowed us to fully
understand and refine algorithmic techniques.

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, infographics & images by Freepik

THANKS! Do you have any questions?

Dao Trung Kien - 6128302
Sochivoath Chiv - 6128304

References:
Extra Array, Cyclic Replacements, Using Reversals:
https://leetcode.com/problems/rotate-array/solution/

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

