Algorithm Design Term Project

Instructed by Asst. Prof. Dr. Thitipong Tanprasert

Problem

Grand Theft Array V | Problem 2000

Problem

Difficulty : 137

Solved by : Navamongkol Tongta 6213387
Problem Author : Ilya Kuchumov. (Prepared by Kirill Devyatkin)
Problem Source : Ural Regional School Programming Contest 2013

Question

A long anticipated game called Grand Theft Array V is about to appear in shops! What, haven't you heard of it? Then we must tell you all about it!

The gameplay in GTA V takes place on a one-dimensional array of integers. The game has two players, each player has his own specified starting position. Players move in turns. During each turn a player takes a number written in his current cell, then writes a zero in it and moves to the left or right adjacent cell. Naturally, the player cannot move beyond the boundaries of the array. At some moment of time two players can be located in the same cell. A player's score is the sum of all numbers he earns during the game. The game ends when zeroes are written in all cells of the array.

Now please calculate the maximum number of points the first and the second player can get (the first player moves first, naturally), if they play optimally well, that is, if they try to maximize their score and if there are multiple variants of maximizing one's own score, they try to minimize the opponent's score.

Input / Output

Input	
10	2124
1234567890	
48	

Solution

Solution

The first player move first naturally means first player can will move more than second player.
There are 3 cases for starting points :

- starting point of $X>Y$
- starting point of $X<Y$
- starting point of $X=Y$

$x>y$

$\begin{array}{lllllllllll}\text { Score } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X=\operatorname{sum}[] \\ \text { Position } & & & X & & & & y & & & \\ Y=\operatorname{sum}[]\end{array}$
$\begin{array}{lllllllllll}\text { Score } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \operatorname{len}[3,4,5,6,7] \% \\ \text { Position } & & & X & & & & y & & & 0\end{array}$
The size of range X to Y is odd number

$x>y$

Score	1	2	3	4	5	6	7	8	9	$x=\operatorname{sum}[3,4,5]$
Position		x			y			$y=\operatorname{sum}[6,7]$		

$\begin{array}{llllllllll}\text { Score } & 1 & 2 & 3 & 4 & 5 & 6 \backslash 7 & 8 & 9 \\ \text { Position } & & x & & & & y & & \end{array}$
$X=\operatorname{sum}[1,2,3,4,5]$
$y=\operatorname{sum}[6,78,9]$

$x<y$

$\begin{array}{llllllllllll}\text { Score } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & X=\operatorname{sum}[] \\ \text { Position } & & y & & & & X & & & & Y=\operatorname{sum}[]\end{array}$
$\begin{array}{lllllllllll}\text { Score } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \text { Position } & & & y & & & & x & & \end{array}$
Len $[3,4,5,6,7] \% 2$!= 0

$x<y$

* move first and get score digit more than Y

Score Position $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ y & & & & x\end{array}$

$X=\operatorname{sum}[5,6,7]$
$y=\operatorname{sum}[3,4]$

Score $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
 $X=\operatorname{sum}[5,6,7,8,9]$
 $Y=\operatorname{sum}[1,2,3,4]$

$x=y$

$\begin{array}{llllllllll}\text { Score } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \text { Position } & & & & X, Y & & & & & \end{array}$
Front $=$ sum[] Back = sum[]

Score $1 \begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ Position

Front $=\operatorname{sum}[1,2,3,4]$ Back $=$ sum $[6,7,8,9]$

$x=y$

Front $=\operatorname{sum}[1,2,3,4]=10$ Back $=\operatorname{sum}[6,7,8,9]=30$

Because X is move first

$X=\max ($ Front, Back $)+$ Las \dagger $Y=\min ($ Front, Back $)$

$$
\begin{aligned}
& x=30+5=35 \\
& y=10
\end{aligned}
$$

Code

Code

```
n = int(input())
array = list(map(int, input().split()))
start = list(map(int, input().split()))
```

N is size of array.
Array is the list of number.
Start is the starting point of X and Y
X and Y is the starting point as a index.
Temp_ x and Temp_ y is the total score.

Code - logic of 3 cases

```
if(x>y):
    if len(array[y:x+1]) % 2 == 0:
            temp_x += sum(array[x+1:])+sum(array[int(((x+y)/2)+1):x+1])
            temp_y += sum(array[:y])+sum(array[y:int((x+y)/2)+1])
    else:
            temp_x += sum(array[x+1:])+sum(array[int(((x+y)/2)):x+1])
            temp_y += sum(array[:y])+sum(array[y:int((x+y)/2)])
    if (x<y):
        if len(array[x:y+1]) % 2 == 0:
            temp_x += sum(array[:x+1])+\operatorname{sum}(\operatorname{array[x+1: int}((x+y)/2)+1])
        else:
            temp_x += sum(array[:x])+sum(array[x:int((x+y)/2)+1])
        temp_y += sum(array[y+1:])+sum(array[int(((x+y)/2)+1):y+1])
```


Approval

ID	Date	Author	Problem	Language	Judgement result	Test \#	Execution time	Memory used
9461023	$\begin{aligned} & \text { 17:09:37 } \\ & 15 \text { Sep 2021 } \end{aligned}$	navamongkol	2000. Grand Theft Array V	Python 3.8×64	Accepted		0.109	13068 KB

References

- https://acm.timus.ru/forum/thread.aspx?id=33740\&upd=635996979450040804

Thanks You

