

CS 3201 Algorithm Design 1/2021

6128110 Nguyen Huy Tung

Term Project

Content

1. Introduction

2. Problem

3. Solving Technique

4. Conclusion

5. References

1. Introduction
This term project, after filtering questions from many pages, I decide to pick

question 503. Next Greater Element II from leetcode.com. This question’s

difficulty is medium, meet requirement.

Description:

Given a circular integer array nums (i.e., the next element

of nums[nums.length - 1] is nums[0]), return the next

greater number for every element in nums.

The next greater number of a number x is the first greater

number to its traversing-order next in the array, which means you

could search circularly to find its next greater number. If it doesn't

exist, return -1 for this number.

 Example 1:

Input: nums = [1,2,1]

Output: [2,-1,2]

Explanation: The first 1's next greater number is 2;

The number 2 can't find next greater number.

The second 1's next greater number needs to search circularly, which is
also 2.

Example 2:

Input: nums = [1,2,3,4,3]

Output: [2,3,4,-1,4]

Constraints:

• 1 <= nums.length <= 104

• -109 <= nums[i] <= 109

2. Problem
The problem is very straightforward, also short.

The output is a new array which has the same length with input.

This is a data structure problem.

For each of item of the output, it is the next greater element of the original

item, we have to search for the next item larger than the original one. If

search failed, we could go back to the beginning and search again. If could

not, output number would be -1. For short, search next greater element in

circular with traversing order from left to right.

3. Solving Technique
First of all, to deal with problem that need to process the whole bucket,

brute-force come up as the first choice.

 For this approach, let call the origin number is x

 If I could find the larger number after x, that is the output number,

else find again from the beginning.

a b x y z

This is it performance

It got accepted, but the running time is very large if compare to other

submissions, analyze this I could say, the time complexity is O(n^2) which is not

ideal at all.

So for this, I decide to use stack structure for this problem, which suggest by

leetcode.

Stack is a LIFO structure.

Example [5,4,3,2,1]

Output [-1,5,5,5,5]

I will start process in reverse way, right to left.

Let call processing number is x

I use this stack to store temp number, if stack is blank push x in to compare with

the original next number. The result number will be temporary is -1 as define of

biggest number so far

If the stack is not blank, I will start pop each number from the stack to see

whether it is the next biggest or not if yes also output as -1

If x not bigger than item y from the stack, output would y

After one time loop, there are many -1 items which is not correct and the stack

still having the remaining items, so I with start using the same loop again.

After 1 loop [-1,-1,-1,-1,-1]

Stack remaining 5 5 > 1,2,3,4

So result would be [-1,5,5,5,5]

If the stack is blank and the loop done, operation complete.

 The loop is * 2 so I could loop twice the array

For this solution I could analaze it has time complexity O(2n) which is O(n)

4. Conclusion

The first solution I do on my own

The second once I got idea from leetcode.com.

The second solution that I show is not very straight forward, although it is the

best solution with incredible runtime with various editions. The stack is just

the way to store temporary biggest number then comparing with other

number

5. References
https://leetcode.com/problems/next-greater-element-ii/submissions/

