"'939. Minimum Area Rectangle*

CSX3009 ALGORITHM DESIGN section 541

Pancheeva Jantarasuriyakul - 6213305

"TABLE OF CONTENTS:

Problem Description

Problem Analysis

Solutions

Submission

THE PROBLEM

939. Minimum Area Rectangle

You are given an array of points in the $X-Y$ plane points where points[i] = [xi, yi]. Return the minimum area of a rectangle formed from these points, with sides parallel to the X and Y axes. If there is not any such rectangle, return 0 .

Example 1:

Input: points = [[1, 1],[1,3],[3,1],[3,3],[2,2]]
Output: 4

ANALYSIS

If 4 points can form a rectangular, they have to be $(x 1, y 1),(x 1, y 2),(x 2, y 1)$, and ($\mathrm{x} 2, \mathrm{y} 2$). $(\mathrm{x}, \mathrm{y})=>[(\mathrm{x} 1, \mathrm{y} \mathrm{I}),(\mathrm{x} 2, \mathrm{y} 2), \ldots]$

Finding each x paired with any yi, we get $\mathrm{xi}=\{\mathrm{y} 1, \mathrm{y} 2, \ldots \mathrm{yi}\}$.

Looping matches $x 1$ and $\times 2$ every possibility.

Calculate the area of the rectangle. Find the sminimum area.

If 4 points can form a rectangular $(x, y)=>[(x 1, y 1),(x 2, y 2), \ldots]$

Find the minimum area

import collections

class Solution(object):

def minAreaRect(self, points):
n = len(points)
mappingx $=$ collections.defaultdict(set)
mappingy $=$ collections.defaultdict(set)
for x, y in points:
mappingx[x].add(y)
mappingy[y].add(x)
$\mathrm{nx}=\operatorname{len}($ mappingx)
$n y=\operatorname{len}(m a p p i n g y)$
if $\mathrm{nx}==\mathrm{n}$ or $\mathrm{ny}=\mathrm{n}$:
return 0
mapping $=$ mappingx if $n y>n x$ else mappingy
keys = list(mapping.keys())
area $=$ float("inf')
for i in range(len(keys)):
$\mathrm{x} 1=\mathrm{keys}[\mathrm{i}]$
for j in range(i+1, len(keys)):
$\mathrm{x} 2=\mathrm{keys}[j]$
yset, yset1 $=$ mapping $[\times 1]$, mapping $[\times 2]$
interset $=$ sorted(yset.intersection(yset1))
if len(interset) > 1:
min_ydiff $=$ min(interset[i+1]-interset[i]
for i in range(len(interset)-1))
area $=$ min(area, min_ydiff * abs(x2-x1))
return \emptyset if area $==$ float("inf') else area

CODING

IThe data obtained is List of ordered pairs $(x, y)=>[(x 1, y 1),(x 2, y 2), \ldots]$

```
import collections
2
3* class Solution(object):
    def minAreaRect(self, points):
            n = len(points)
            mappingx = collections.defaultdict(set)
            mappingy = collections.defaultdict(set)
```


CODING

Finding each x paired with any yi, we get $x i=\{y 1, y 2, \ldots y i\}$.

```
10%
11
12
13
14
15
16 *
17
18
19
20
2 1
for }x,y\mathrm{ in points:
        mappingx[x].add(y)
        mappingy[y].add(x)
nx = len(mappingx)
ny = len(mappingy)
if nx == n or ny == n:
    return 0
mapping = mappingx if ny > nx else mappingy
keys = list(mapping.keys())
```


CODING

Looping matches x1 and x2 every possibility.

```
24 *
25
26 *
27
28
29
30
```

```
for i in range(len(keys)):
    x1 = keys[i]
    for j in range(i+1, len(keys)):
        x2 = keys[j]
        yset, yset1 = mapping[x1], mapping[x2]
        interset = sorted(yset.intersection(yset1))
```


CODING

Calculate the area of the rectangle. Find the sminimum area.

```
32*
33*
34
35
36
3 7
```

```
if len(interset) > 1:
    min_ydiff = min(interset[i+1]-interset[i]
        for i in range(len(interset)-1))
    area = min(area, min_ydiff * abs(x2-x1))
return 0 if area == float("inf') else area
```


RESULT

Testing with sample smaple data the console shows the following results.
Accepted Runtime: 17 msYour input $[[1,1],[1,3],[3,1],[3,3],[2,2]]$
Output 4
Expected

4

RESULT

Testing with sample smaple data the console shows the following results.

```
Accepted Runtime: 17 ms
Your input [[1,1],[1,3],[3,1],[3,3],[4,1],[4,3]]
Jutput 2
```


$-$ 04 SUBMISSION

SUBMSSION

Time Submitted	Status	Runtime	Memory	Language
$09 / 14 / 202122: 42$	Accepted	203 ms	13.9 MB	python

Submission Detail

137/137 test cases passed.

REFERENCE

https://blog.csdn.net/fuxuemingzhu/ar ticle/details/83961509

"THANKS

