³939. Minimum Area Rectangle**

CSX3009 ALGORITHM DESIGN section 541

Pancheeva Jantarasuriyakul - 6213305

Difficulty

TABLE OF CONTENTS *

Problem Description

Solutions

Problem Analysis

Submission

O1 PROBLEM DESCRIPTION

THE PROBLEM

939. Minimum Area Rectangle

You are given an array of points in the X-Y plane points where points[i] = [xi, yi]. Return the minimum area of a rectangle formed from these points, with sides parallel to the X and Y axes. If there is not any such rectangle, return O.

Output: 4

Example 1:

Input: points = [[1,1],[1,3],[3,1],[3,3],[2,2]]

DZ PROBLEM ANALYSIS

ANALYS S

If 4 points can form a rectangular, they have to be (x1, y1), (x1, y2), (x2, y1), and (x2, y2). (x, y) => [(x1, y1), (x2, y2), ...]

Finding each x paired with any yi, we get $xi = \{y1, y2, ..., yi\}$.

Looping matches x1 and x2 every possibility.

Calculate the area of the rectangle. Find the sminimum area.

If 4 points can form a rectangular (x, y) => [(x1, y1), (x2, y2), ...]

Find the minimum area

1 2	<pre>import collections</pre>
3 •	class Solution(object
4 •	def minAreaRect(s
5	n = len(point
6	· · · · · · · · · · · · · · · · · · ·
7	<pre>mappingx = co</pre>
8	mappingy = co
9	
10 -	for x, y in p
11	<pre>mappingx[</pre>
12	mappingy[
13	
14	<pre>nx = len(mapp</pre>
15	ny = len(mapp
16 🔻	if nx == n or
17	return 0
18	
19	mapping = map
20	
21	keys = list(m
22	area = float(
23	
24 🔻	for i in rang
25	x1 = keys
26 🔻	for j in
27	x2 =
28	
29	yset,
30	inter
31	1.6.1
32 *	if le
33 *	m
34	
35	a
36	
37	return 0 if a


```
:):
self, points):
ts)
ollections.defaultdict(set)
pllections.defaultdict(set)
points:
[x].add(y)
[y].add(x)
pingx)
pingy)
ny == n:
>pingx if ny > nx else mappingy
napping.keys())
'inf')
ge(len(keys)):
;[i]
range(i+1, len(keys)):
keys[j]
yset1 = mapping[x1], mapping[x2]
rset = sorted(yset.intersection(yset1))
en(interset) > 1:
nin_ydiff = min(interset[i+1]-interset[i]
   for i in range(len(interset)-1))
area = min(area, min_ydiff * abs(x2-x1))
area == float('inf') else area
```

CODING

IThe data obtained is List of ordered pairs (x, y) = [(x1, y1), (x2, y2), ...]

```
import collections
class Solution(object):
    def minAreaRect(self, points):
        n = len(points)
        mappingx = collections.defaultdict(set)
        mappingy = collections.defaultdict(set)
```


CODING

Finding each x paired with any yi, we get $xi = \{y1, y2, ..., yi\}$.

<pre>for x, y in points: mappingx[x].add(y) mappingy[y].add(x)</pre>
<pre>nx = len(mappingx) ny = len(mappingy) if nx == n or ny == n: return 0</pre>
<pre>mapping = mappingx if ny > r</pre>
<pre>keys = list(mapping.keys())</pre>

10 •

16 •

nx else mappingy

Looping matches x1 and x2 every possibility.

```
for i in range(len(keys)):
   x1 = keys[i]
    for j in range(i+1, len(keys)):
        x^2 = keys[j]
        yset, yset1 = mapping[x1], mapping[x2]
        interset = sorted(yset.intersection(yset1))
```

24	Ŧ
25	
26	Ŧ
27	
28	
29	
30	

Calculate the area of the rectangle. Find the sminimum area.

```
32 •
                       if len(interset) > 1:
33 •
              return 0 if area == float('inf') else area
```

34

35

36

37

min ydiff = min(interset[i+1]-interset[i] for i in range(len(interset)-1)) area = min(area, min ydiff * abs(x2-x1))

RESULT

Testing with sample smaple data the console shows the following results.

AcceptedRuntime: 17 msYour input[[1,1],[1,3],[3,1],[3,3],[2,2]]Output4Expected4

RESULT

Testing with sample smaple data the console shows the following results.

Accepted	Runtime: 17 ms
r our input	[[1,1],[1,3],[3,1],[3,3],[4,1],[4,3]]
Dutput	2
Expected	2

SUBMSSION

Time Submitted	Status	Runtime
09/14/2021 22:42	Accepted	203 ms
Submission Detail		
137 / 137 test cases passed. Runtime: 203 ms Memory Usage: 13.9 MB		

Memory Language 13.9 MB python Status: Accepted Submitted: 0 minutes ago

REFERENCE

https://blog.csdn.net/fuxuemingzhu/ar ticle/details/83961509

S THANKS

