Timus Online Judge

1878.

Rubinchik's Cube

Time limit: 0.5 second
Memory limit: 64 MB
Difficulty: 192

CS3201 | Algorithm Design | 1-2021

Team

Minn Moe Yan Oo U6017540
Vibolrottnak Seng U6118173

Content

1 Problem Description

Explanation of the Problem

2 Analysis

Understanding the Input and Output

3 Implementation

Problem Approach and Code Explanation

4 Conclusion

Submission Result

Problem Description

Explanation of the Problem

Problem Description

- This rubik's cube consists of four layers of size 4×4.

The layers look as follows.

- Each layer is made of glass and is absolutely transparent.
- The upper face of each layer is divided into 16 equal squares.
- Four of the squares of each layers are painted red, yellow, blue, or green in their respective positions

Look on Separate layers

- The cube is solved if it is in one of the following states (top view).

Input

You are given four lines, each containing four integers, which describe the current state of the cube (top view). The numbers are in the range from 1 to 4; they correspond to the colors of the cube's squares. Different numbers denote different colors.

Output

Output the minimum number of turns needed for solving the cube.

Sample

			Input		
	Output				
2	1	2	3	1	
1	1	2	2		
4	4	3	3		
1	4	3	4		

2
 Analysis

Understanding the Input and Output

2	1	2	3
1	1	2	2
4	4	3	3
1	4	3	4

			Input		
2		Output			
2	1	2	3	1	
1	1	2	2		
4	4	3	3		
1	4	3	4		

View when put on top of each other

View of the separate layers

1	1	2	2
1	1	2	2
4	4	3	3
4	4	3	3

Implementation

Problem Approach and Code Explanation

```
#include
    #include <iostream>
    #include <algorithm>
    using namespace std;
    Fint main()
    {
```

 int cube_initial[4][4];
 int cube_solve[4][4][2] \(=\{\{\{0,0\},\{0,3\},\{3,3\},\{3,0\}\}\)
 \(\{\{0,1\},\{1,3\},\{3,2\},\{2,0\}\}\)
 \(\{\{1,0\},\{0,2\},\{2,3\},\{3,1\}\}\)
 \(\{\{1,1\},\{1,2\},\{2,2\},\{2,1\}\}\}\)
 int turns[4];
 for (int \(i=0 ; i<4 ; i++\))
 for (int \(\mathbf{j}=0 ; \mathrm{j}<4\); j++
 cin >> cube_initial[i][j]
 memset(turns, c: 0, sizeof(turns))
 for (int i = 0; i < 4; i++)
 for (int \(j=0 ; j<4 ; j++\))
 if (cube_initial[cube_solve[i][j][0]][cube_solve[i][j][1]] == 1)
 f
 turns[(\(j+1)\) \% 4]++;
 turns \([(j+2) \% 4]+=2\)
 turns[(j + 3) \% 4]++
 \(\}\)
 C++
return 0

4 Conclusion

Submission Result

Submission

Resources

- https://acm.timus.ru/problem.aspx?space=1\&num=1878
- https://acm.timus.ru/forum/?space=1\&num=1878
- https://github.com/anthonymirand/CodingPractice/blob/m aster/1878\%20-\%20Rubinchik's\%20Cube.cpp

