
Number of Dice
Rolls With
Target Sum
Thunchanok Iacharoen 6214599
Nahatai Sirisak 6214600

L
ee

tC
od

e
11

55
.

Difficulty:
Medium

Table of Contents

A brief explanation of the problem.01

Analyze the problem to achieve more
insights for solving the problem.02

Explore several ways to solve the
problem.03

Final comment regarding the
problem.04

Problem

Analysis

Solutions

Conclusion

Problem01

Question

You have d dice and each die has f
faces numbered 1, 2, ..., f. You are
given three integers d, f, and
target.

Return the number of possible
ways (out of fd total ways) modulo
109 + 7 to roll the dice so the sum
of the face-up numbers equals
target.

Example 2
Input: d = 2, f = 6, target = 7
Output: 6
Explanation: You throw two dice, each
with 6 faces. There are 6 ways to get a
sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.

Example 1
Input: d = 1, f = 6, target = 3
Output: 1
Explanation: You throw one die with 6 faces.
There is only one way to get a sum of 3.

Constraints

• 1 <= d, f <= 30
• 1 <= target <= 1000

Analysis02

Problem Analysis

Explore all
combinations of all
faces for all dices

A general algorithm
for computing the
number of ways to
roll a particular total

We’re looking for
the most optimal
solution

This problem can be
divided and solved
in small sub
problems

Solutions03

Brute
Force

We started solving the problem using the most obvious solution.
In this case, we try to explore all combinations of all faces for all
dices, and count the ones that give a total sum of target.

The Code

We check if the number of dice is 0 or number of target left is 0, then return
d == target which is the shorthand of number of dice and target is 0. Then,
we target the value between 1 until f. We reduced the number of dice by 1
and our target by i because we already use one of our dice but on first part
of the solving. So that’s the number of way we can solve if our first dice is
targeting certain value and the rest we do the process again. The number of
f will remain the same for the whole time.

The Code

After we conduct some test runs with
sample data, we’ve come to the conclusion
that even though the brute force technique
worked quite well and can delivered us the
correct answer, it’s not a particularly
efficient solution.

The Result

Unfortunately, it exceeded the time limit due to the amount of time we’ll need to
repeat the computating process.

Complexity Analysis

• The time complexity is O(fd) since brute force recursively call
the function where each d calls every f.

• The space complexity is O(d) for stack.

Memoization (DP)

We attempt to optimize the runtime and memory by keeping the
pre-computed results for dice i and target, then return it when the
recursive function is called.

There’s a lot of repeated work during the computation. That’s why memoization is needed. As
shown in the example, the number of ways of current die is decided by its previous die’s ways to
compose some targets. The repeated pairs are underlined. If we can catching the result for them,
then we will be able to reduce the time for recalculation.

Example

The Code

The Code

The code is similar to the brute force version but adding the array and
checking if it exist.

(1) Set the array as [31][1001] which is the maximum of the dice and the
target.
(2) Set the base case similar to the brute force version and check if there
exists the already computed value, if it exists, then it will return the value
which is already computed instead of call the function again.
(3) Store the previous value in the array and use it when the call is repeated.
We set the res + 1 to check whether this was pre-computed as all dp
initialized to be 0. If pre-computed, return dp[d][target] - 1. When we get
the value that already exist , then we subtract 1 as we add 1 to this state.

The Result

With the additional of
memoization technique to
our code, we successfully
improve the complexity. It passed the

time limit.

Complexity Analysis

• The time complexity is O(d * f * target) since the function calls
vary from 0 to d and 0 to target.

• The space complexity is O(d * target) for memoization.

Tabulation (DP)

Another approach of dynamic programming that can also
improve the complexity is tabulation. It used the bottom up
technique which is different from the memoization that use the
top down technique. With this technique there’s no recursion but
instead we starting at the base case and building up.

Example

The table represents the array which will keep the result of the function which the value inside show
the possibility of ways can dice i reached the target. The table use the range value of the dice and the
target. The value that we getting are calculated from the previous dice sum up with face dp[I][j] =
(dp[I][j] + dp[I-1][j-k]) % mod. With 3 dice 6 face and target 6 we can get 10 possible ways to reach
the target.

The Code

The Code

We use nested loop in the function to loop through dice then
target then loop through the range min(face, target) to sum up the
possible way of the previous dice. after finish computation then
store in the array to use it to execute the future value.

(1) Set the array to the size of the dice * target > [d+1][target+1]
(2) Set the base case: if the number of dice and target is 0 then
return 1 because there is only 1 way to solve. However, if either
dice or target is 0, then it’s impossible to solve.
(3) For the Recurrence, with i dice, the possible ways to reach j
target is the sum of the previous dice with each possible f face
value of the current die. The compute value will be stored in the
array. After compute all the possible ways return the final value.

The Result

Tabulation technique helps
us speed up the algorithm
since there’s no need to
repeat the same process over
and over again anymore.

It passed the time limit.

Complexity Analysis

• The time complexity is O(d * f * target).
• The space complexity is O(d * target) > O(target) since we only

need to store counts for the previous dice.

Conclusion04

After we tested all three approaches, it can be clearly seen that DP
(memoization and tabulation) is more efficient in term of runtime and
memory usage.

During the test runs of each techniques, we are able to grasp the
concept behind it quickly due to the similarity between them with a
slight change.

Final Comment

THANK YOU
CREDITS: The template was created by Slidesgo and Freepik.

REFERENCES:
● https://leetcode.com/problems/number-of-dice-rolls-with-target-sum/discuss/770166/evolve-from-brute-

force-to-dp
● https://medium.com/tech-life-fun/leet-code-1155-number-of-dice-rolls-with-target-sum-graphical-explained-

python3-solution-224f8c0af23
● https://leetcode.com/problems/number-of-dice-rolls-with-target-sum/discuss/473863/C%2B%2B-

solution%3A-recursive-greater-memoization-greater-tabulation

