Letter Combination of a Phone Number

Difficulty: Medium
Leetcode.com/letter-combinations-of-a-phone-number

Page

I Problem Statement 3
II Algorithm 5
III Implementation 8
IV Conclusion 13
V References 14

- Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent. Return the answer in any order.
- A mapping of digit to letters (just like on the telephone buttons) is given on the RIGHT figure.
**NOTE **

- The digit 0 maps to 0 itself.
- The digit 1 maps to 1 itself.

EXAMPLE 1:

Input: digits = "23"
Output:["ad","ae","af","bd","be","bf","cd","ce","cf"]

Input: digits = "2"
EXAMPLE 2:
Input: digits = ""
Output: []

Output: ["a","b","c"]

- $0<=$ digits.length <= 4
- digits[i$]$ is a digit in the range ['2', ' 9 ']

Algorithm That We Use

BackTracking

Recursion

The problem can be solved using the backtracking approach.
The idea is to consider a digit as the starting point and generate all possible combinations with that letter.

Input: digits = "23" Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"]

THERE IS ONE OBSERVATION THAT WHEN We have two digits each with 3 POSSIBLE CHARACTER REPRESENTATION (E.G. "23") THEN NO. OF POSSIBLE COMBINATIONS $=3^{2}$. WHEN THERE IS ONE DIGIT REPRESENTING 3 ALPHABETS AND ONE DIGIT REPRESENTING 4 ALPHABETS, THEN NO. OF POSSIble COMBINATIONS = 3*4

Pseudocode

- If the input is empty, simply return an empty array.
- Initialize a hashmap that maps digits to their letters, i.e. mapping " 2 " to " a ", "b", and "c".

Pseudocode

```
1. CONSIDER THE PARAMETERS OF THE BACKTRACKING FUNCTION AS THE
PATH, I.E THE CURRENT PATH WE ARE TRAVERSING ON AND THE INDEX,
I.E. ON THE DIGIT WE ARE ON.
2. THE BASE CASE WOULD BE, IF OUR CURRENT COMBINATION OF LETTERS
IS THE SAME LENGTH AS THE INPUT DIGITS, THAT ITERATION IS
COMPLETED. THEREFORE, INSERT IT INTO THE ANSWER LIST, AND
BACKTRACK.
ELSE, FIND ALL THE POSSIBLE COMBINATIONS OF LETTERS THAT
CORRESPOND WITH THE CURRENT DIGIT I.E. DIGITS[INDEX].
3. TRAVERSE THROUGH THE LETTERS. FOR EACH LETTER, INSERT THE
LETTER TO OUR CURRENT PATH, AND BACKTRACK AGAIN, AND INCREMENT
THE INDEX BY 1.
4. REMOVE THE LETTER FROM THE PATH ONCE THE ITERATION IS
COMPLETED.
```


III Implementation

```
```

class Solution:

```
```

class Solution:
def letterCombinations(self, digits: str) -> List[str]:
def letterCombinations(self, digits: str) -> List[str]:
result = []
result = []
phone_dic = {
phone_dic = {
"2" : "abc",
"2" : "abc",
"3" : "def",
"3" : "def",
"4" : "ghi",
"4" : "ghi",
"5" : "jkl",
"5" : "jkl",
"6" : "mno",
"6" : "mno",
"7" : "qprs",
"7" : "qprs",
"8" : "tuv",
"8" : "tuv",
"9" : "wxyz"}
"9" : "wxyz"}
def backtrack(i, currentString):
def backtrack(i, currentString):
if len(currentstring) == len(digits):
if len(currentstring) == len(digits):
result.append(currentstring)
result.append(currentstring)
return
return
for P in phone_dic[digits[i]]:
for P in phone_dic[digits[i]]:
backtrack(i + 1, currentString + p)
backtrack(i + 1, currentString + p)
if digits:
if digits:
backtrack(0, "")
backtrack(0, "")
return result

```
```

 return result
    ```
```

Accepted

Your input

Output

Expected

```
def letterCombinations(self, digits: str) -> List[str]:
    result = []
    phone_dic = {
        "2" : "abc",
        "3" : "def"
        "4" : "ghi",
        "5" : "jkl",
        "6" : "mno",
        "7" : "qprs",
        "8" : "tuv",
        "9" : "wxyz"}
```


here we add "result" it will save the value. after that we add a "phone_dic" first we add a digits that in range 2-9, and follow up dictionary in the example.

```
for p in phone_dic[digits[i]]:
    backtrack(i + 1, currentString + p)
"7": "qprs",
```

in here, digits[i] will tell what digits we are at, and
next, backtrack(i+1) to move to the next digits, and (currentString $+p$) to give crrentString a visits to p

```
def backtrack(i, currentString):
    if len(currentString) == len(digits):
        result.append(currentString)
        return
```

as you can see "i" going to tell what index at in digit string "currentString" is reading the dictionary. after that len(currentString) is equally to len(digits)
what it means is it will take every single digits and map in currentStirng.
phone_dic[digit[i]] will help to map a 4 dictionary that i marked it in yellow
"9" : "wxyz"\}

Example 2:

Input: digits = ""
return result
lastly, if digits is empty the recursive call that is backtrack is 0 it will return as example 2 empty array.

IV Conclusion

Approach Submission

Running time: 48 ms , Memory: 14 MB

6217429 VIBOLROTTANA SENG

6215106 Anwar Rasheed

YouTube:

https://www.youtube.com/watch?v=0snEunUacZY
LeetCode Dicussion:
https://leetcode.com/problems/letter-combinations-of-a-phonenumber/discuss/?currentPage=1\&orderBy=most votes\&query三

Thank you for listening!

