

ASSUMPTION UNIVERSITY Vincent Mary School of Science and Technology Department of Information Technology

IT4292 SENIOR PROJECT II

Final Report

Neural Network Learning Generalization with Customized Gaussian Noise Injection

Project Advisor:

Asst. Prof. Dr. Thitipong Tanprasert

Project Committee:

Asst. Prof. Dr. AnilKumar Kothalil Gopalakrishnan

Asst. Prof. Dr. Benjawan Srisura

Submitted By: Mr.Chaitach Vadhanachai 5915132

Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science and Technology in Information Technology and Computer Science

Abstract

This report provides a study of Neural Network Learning Generalization with Gaussian Noise Injection. Though such injections have been studied when applied to data. There have been few studied on understanding the Neural Network Generalization when applied to network activation.

Here we derive the generalization of the Neural Network with gaussian noise injection, obtained by scaling the injection noise to original data. we show analytically and empirically that such generalization produces the accuracy with different datasets

Table of content

	Page
Abstract	2
Table of content	3
Objective	4
Introduction	4
Method	5
Datasets	5-9
Generate Noise Data	9-10
Build Model	11
Train Model	11
Code and Experiment	12-23
Result	24-45
Conclusion	46
References	47

Objective

This project will aim to uncover these mechanisms to better understand the generalization in neural network with GNIs. We aim to get the result from train the neural network model with the difference datasets that have been injected with the various of noise data. Also, to determine that is noise adding technique could improving generalization in neural network.

Introduction

Gaussian noise injections (GNIs) are a simple and widely-used regularization method for training neural networks, noise injection techniques involve multiplying samples from a noise distribution to the weights of a neural network during training. Such techniques have numerous demonstrated advantages. Models that have been trained with noise frequently generalize to new data better and are less likely to overfit. [1] Explicit Regularization in Gaussian Noise Injections Research

Numerous research has been conducted on the advantages of noise data, but the exact processes by these injections work remain unclear. Early results suggest that to reduce overfitting by training the network on noise data and by changing the complexity of the model network. Most research said, introducing noise to a dataset can indeed have a positive influence on the model.[2] Train Neural Network With noise [3] Noise Affect generalization

Concretely our studies are:

- We derive an analytic form for a generalizer with GUIs
- We scaling the value of noise to inject to the original data
- Finally, we show analytically and empirically about the result of generalization accuracy value when finish training the model

Method

How to do

Datasets

Firstly, we research the datasets from various sources and try to get the best suitable datasets which contained many kinds of attributes with the output which are Boolean type (0,1). we choose the appropriate datasets for this experiment which the data must be the binary classification data. Which most data used in this experiment retrieve from Kaggle and Google Data Finder. [4] Kaggle [5] Data finder

Secondly, after we get all datasets that we will use in our experiment, we balance the data by using out sprit train-test program and get the equal output of data and generate in to new csv file for training. This method we sprit train-test data and prepare the data to train in the model.

Dataset that we use:

- Breast Cancer Dataset (570 of Data Row)
- Diabetes Dataset (769 of Data Row)
- Smoking Dataset (55693 of Data Row)
- Wine Quality Dataset (1600 of Data Row)
- Heart Disease Dataset (1026 of Data Row)

Breast Cancer Dataset

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter 2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)
- k) diagnosis (0 or 1)

The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image,

resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. [6] Breast Cancer Dataset

Diabetes Dataset

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective is to predict based on diagnostic measurements whether a patient has diabetes.

Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage. [7] Diabetes Dataset

Pregnancies: Number of times pregnant

Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test

BloodPressure: Diastolic blood pressure (mm Hg)

SkinThickness: Triceps skin fold thickness (mm)

Insulin: 2-Hour serum insulin (mu U/ml)

BMI: Body mass index (weight in kg/(height in m)^2)

DiabetesPedigreeFunction: Diabetes pedigree function

Age: Age (years)

Outcome: Class variable (0 or 1)

Smoking Dataset

This dataset is a collection of basic health biological signal data

To determine the presence or absence of smoking through bio-signals

Columns contained

age : 5-years gap

height(cm)

weight(kg)

waist(cm) : Waist circumference length

eyesight(left)

eyesight(right)

hearing(left)

hearing(right)

systolic : Blood pressure

relaxation : Blood pressure

fasting blood sugar

Cholesterol : total

triglyceride

HDL : cholesterol type

LDL : cholesterol type

hemoglobin

Urine protein

serum creatinine

AST : glutamic oxaloacetic transaminase type

ALT : glutamic oxaloacetic transaminase type

 $Gtp: \gamma$ -GTP

oral : Oral Examination status

Dental caries

Smoking (1 or 0)

To prepare smoking dataset, we remove other Boolean data type such as hearing, urine protein, and dental caries. Which could interrupt the training process and get the inaccurate accuracy. [8] Smoking Dataset

Wine Quality Dataset

The dataset is related to red and white variants of the Portuguese "Vinho Verde" wine.

Input variables (based on physicochemical tests):

- 1 fixed acidity
- 2 volatile acidity
- 3 citric acid
- 4 residual sugar

5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data) [9] Wine Quality Dataset

Heart Disease Dataset

This data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V [10] Heart Disease Dataset

Attribute Information:

- 1. age
- 2. sex
- 3. chest pain type (4 values)
- 4. resting blood pressure
- 5. serum cholestoral in mg/dl
- 6. fasting blood sugar > 120 mg/dl
- 7. resting electrocardiographic results (values 0,1,2)
- 8. maximum heart rate achieved
- 9. exercise induced angina
- 10. oldpeak = ST depression induced by exercise relative to rest
- 11. the slope of the peak exercise ST segment
- 12. number of major vessels (0-3) colored by flourosopy
- 13. thal: 0 = normal; 1 = fixed defect; 2 = reversable defectThe names and social security numbers of the patients were recently removed from the database, replaced with dummy values.

Example of Diabetes Original Dataset

	А	В	С	D	E	F	G	Н	Ι
1	Pregnancie	Glucose	BloodPress	SkinThickn	Insulin	BMI	DiabetesPe	Age	Outcome
2	6	148	72	35	0	33.6	0.627	50	1
3	1	85	66	29	0	26.6	0.351	31	0
4	8	183	64	0	0	23.3	0.672	32	1
5	1	89	66	23	94	28.1	0.167	21	0
6	0	137	40	35	168	43.1	2.288	33	1
7	5	116	74	0	0	25.6	0.201	30	0
8	3	78	50	32	88	31	0.248	26	1
9	10	115	0	0	0	35.3	0.134	29	0
10	2	197	70	45	543	30.5	0.158	53	1

	Α	В	C	D	E	F	G	Н	Ι
200	1	147	94	41	0	49.3	0.358	27	1
201	3	187	70	22	200	36.4	0.408	36	1
202	6	162	62	0	0	24.3	0.178	50	1
203	4	136	70	0	0	31.2	1.182	22	1
204	0	181	88	44	510	43.3	0.222	26	1
205	8	154	78	32	0	32.4	0.443	45	1
206	1	128	88	39	110	36.5	1.057	37	1
207	0	123	72	0	0	36.3	0.258	52	1
208	6	190	92	0	0	35.5	0.278	66	1
209	1	126	60	0	0	30.1	0.349	47	1
210	1	93	70	31	0	30.4	0.315	23	0
211	1	97	70	40	0	38.1	0.218	30	0
212	1	143	74	22	61	26.2	0.256	21	0
213	2	123	48	32	165	42.1	0.52	26	0
214	4	110	66	0	0	31.9	0.471	29	0
215	6	103	66	0	0	24.3	0.249	29	0
216	0	95	80	45	92	36.5	0.33	26	0
217	9	124	70	33	402	35.4	0.282	34	0
218	0	98	82	15	84	25.2	0.299	22	0
219	1	84	64	23	115	36.9	0.471	28	0
220	0	152	82	39	272	41.5	0.27	27	0

Example of Diabetes Train-Test Sprit Dataset (Balance Data)

Generate noise data

When all datasets are ready to use for training, we contribute the program to generate and inject noise data into original data. In this method, firstly, we need to get the scale value for each data column by getting the max value of each column and calculate the average value from each column. Then, we calculate the scale value by subtract the max value with average value from each column then divide by 9 18 and 27. By using the value of 9,18, and 27 to divide the scale value, we will get the noise value which is not getting out of range from the original value range. Lastly, we generate new csv files for noise data by each divided value.

Example of Wine Quality original Dataset

	Α	В	С	D	E	F	G	Н	Ι	J	K	L
1	fixed acidit	volatile acio	citric acid	residual su	chlorides	free sulfur	total sulfur	density	рН	sulphates	alcohol	Output
2	7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	1
3	7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	1
4	8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.3	0.75	10.5	1
5	7.5	0.52	0.16	1.9	0.085	12	35	0.9968	3.38	0.62	9.5	1
6	5.4	0.835	0.08	1.2	0.046	13	93	0.9924	3.57	0.85	13	1
7	9.6	0.32	0.47	1.4	0.056	9	24	0.99695	3.22	0.82	10.3	1
8	12.8	0.3	0.74	2.6	0.095	9	28	0.9994	3.2	0.77	10.8	1
9	12.8	0.3	0.74	2.6	0.095	9	28	0.9994	3.2	0.77	10.8	1
10	5.2	0.48	0.04	1.6	0.054	19	106	0.9927	3.54	0.62	12.2	1

Example of Wine Quality Noise Dataset (Scale value divided by 9)

1	Α	В	С	D	E	F	G	Н	Ι	J	K	L
1	fixed acidit	volatile acid	citric acid	residual su	chlorides	free sulfur	total sulfur	density	pН	sulphates	alcohol	Output
2	7.289359	0.586244	-0.02283	1.156651	0.039566	27.35481	20.06437	0.993387	3.359803	0.647777	10.1227	1
3	7.299499	0.481061	-0.0278	2.740377	0.103765	4.829714	10.6962	0.996654	3.359883	0.568431	9.109432	1
4	7.87117	0.3808	0.778657	1.683766	0.071076	35.56585	99.47238	0.99673	3.263912	0.764074	10.43612	1
5	7.125909	0.499908	0.17468	2.347046	0.045759	2.545786	32.45266	0.996347	3.350827	0.50897	9.506654	1
6	6.033784	0.750643	0.133922	0.479668	-0.0449	19.92279	106.3148	0.993029	3.576785	0.804763	12.71043	1
7	9.875736	0.228714	0.416344	1.283957	0.018147	9.216195	40.4453	0.997788	3.226386	0.791144	10.51945	1
8	13.97483	0.39274	0.703913	3.54455	0.070242	14.00067	63.24729	0.999525	3.236643	0.593108	11.38567	1
9	11.7685	0.220953	0.800272	3.149721	0.081328	14.31498	53.50992	0.998048	3.196158	0.807592	10.79055	1
10	4.505171	0.471147	-0.04106	1.090979	0.036213	15.50103	99.03278	0.993005	3.480286	0.620443	12.01256	1

Example of Wine Quality Noise Dataset (Scale value divided by 18)

Γ		Α	В	С	D	E	F	G	Н	Ι	J	K	L	
	1	fixed acidit	volatile acid	citric acid	residual su	chlorides	free sulfur	total sulfur	density	pН	sulphates	alcohol	Output	
	2	7.23266	0.648194	-0.03041	0.878667	0.046832	17.26747	18.31819	0.994585	3.378037	0.479579	9.48439		L
	3	8.013714	0.627386	0.07059	1.940863	0.079448	8.887416	11.62253	0.99651	3.356075	0.636948	9.644892		1
	4	8.025107	0.335786	0.573804	1.681127	0.100888	37.20855	81.76243	0.996364	3.342258	0.710782	10.84573		1
	5	7.649961	0.571846	0.126745	2.44509	0.012978	9.69612	61.79469	0.996911	3.388004	0.546073	9.361493		1
	6	4.420228	0.796067	0.085209	1.620216	0.027177	9.300208	89.10192	0.992657	3.590751	0.925333	12.91732		L
	7	10.28965	0.352402	0.491927	1.667198	0.074255	8.093578	2.641376	0.997063	3.240683	0.842195	10.05799		L
	8	12.03098	0.244449	0.74507	2.503434	0.121203	6.026997	16.48323	0.999192	3.220905	0.722808	10.76294		L
	9	12.80865	0.241654	0.816129	2.114581	0.063811	11.53594	18.27364	0.998798	3.189684	0.725475	10.89252		L
	10	5.518082	0.46101	0.047497	2.155941	-0.01676	17.80566	83.98495	0.992348	3.535247	0.669276	12.52235		L

Example of Wine Quality Noise Dataset (Scale value divided by 27)

	Α	В	С	D	E	F	G	Н	Ι	J	K	L
1	fixed acidit	volatile acid	citric acid	residual su	chlorides	free sulfur	total sulfur	density	pН	sulphates	alcohol	Output
2	7.500168	0.663481	0.106526	1.640128	-0.00049	17.62071	37.85311	0.993768	3.37608	0.451486	10.00638	1
3	8.003707	0.632885	0.016555	1.500765	0.097227	10.42899	9.649266	0.99704	3.398064	0.584311	9.50194	1
4	8.804072	0.183357	0.548992	2.477573	0.109659	36.49119	117.2292	0.997279	3.311569	0.688119	10.43795	1
5	7.671727	0.464798	0.147022	1.867424	0.048987	14.64263	20.52622	0.996441	3.391972	0.621618	9.447839	1
6	5.096564	0.830186	0.083913	1.143174	0.037604	9.116466	98.15966	0.992505	3.5748	0.77624	13.14514	1
7	9.203519	0.305283	0.417191	1.467583	0.049761	8.709502	17.50714	0.996364	3.240998	0.790509	10.80039	1
8	12.75454	0.353287	0.77519	2.146982	0.125567	8.553717	27.77431	0.999633	3.192729	0.781253	10.53925	1
9	13.58056	0.270918	0.728974	2.785656	0.128338	13.1092	33.42671	0.999841	3.147018	0.724916	10.49091	1
10	5.858719	0.550476	0.038529	1.286851	0.038481	21.88365	129.4676	0.993223	3.559491	0.701353	12.12303	1

Build Model

We build the difference NN model that suitable for each dataset. To be more clearly, each datasets have the difference input size, hence for the input dimension in dense layer must be difference for each dataset and some datasets need to add more dense layers to handle the data.

Train model

As we already prepare the original data and noise data in csv file. We could import the data and train each dataset with the suitable model that we have created for each dataset. We train the all data with epochs 500 and use early stopping method to declare the best epoch value with the highest accuracy for each data. We also plot the accuracy graph in every training.

Code and Experiments

Main Code

Generate noise to original data

```
]: def noise9_data_generator(data):
        generate_data =[]
         for col in data.columns:
             scale = (data[col].max()-data[col].mean())/9
noises = []
             for idx in range(len(data[col])):
    random = np.random.normal(loc=0, scale=1, size =(1,1))[0][0]*scale
    noise = data[col][idx]+random
             noises.append(noise)
generate_data.append(noises)
        gen_df = pd.DataFrame(generate_data).T
gen_df.columns = data.columns
        return gen_df
]: for idx in range(len(data)):
        new_df = noise9_data_generator(data[idx])
        new_df.to_csv('noise9 {}.csv'.format(data_name[idx]))
]: def noise18_data_generator(data):
    generate_data =[]
         for col in data.columns:
             scale = (data[col].max()-data[col].mean())/18
noises = []
              for idx in range(len(data[col])):
                 random = np.random.normal(loc=0, scale=1, size =(1,1))[0][0]*scale
noise = data[col][idx]+random
                  noises.append(noise)
        generate_data.append(noises)
gen_df = pd.DataFrame(generate_data).T
gen_df.columns = data.columns
        return gen_df
]: for idx in range(len(data)):
        new_df = noise18_data_generator(data[idx])
        new_df.to_csv('noise18 {}.csv'.format(data_name[idx]))
]: def noise27_data_generator(data):
        generate_data =[]
for col in data.columns:
              scale = (data[col].max()-data[col].mean())/18
             noises = []
for idx in range(len(data[col])):
                  random = np.random.normal(loc=0, scale=1, size =(1,1))[0][0]*scale
                  noise = data[col][idx]+random
noises.append(noise)
             generate_data.append(noises)
        gen_df = pd.DataFrame(generate_data).T
        gen_df.columns = data.columns
        return gen_df
]: for idx in range(len(data)):
        new_df = noise27_data_generator(data[idx])
        new_df.to_csv('noise27 {}.csv'.format(data_name[idx]))
```

Train model

```
from keras import callbacks
earlystopping = callbacks.EarlyStopping(monitor ="loss",
                                              mode ="min", patience = 5,
restore_best_weights = True)
model=None
X_train=None
X_test=None
y_train=None
y_test=None
for idx in range(len(data)):
   print('-----
                                  --{}-----'.format(data_name[idx]))
     prepare_train(data[idx])
    history= model.fit(X_train, y_train,validation_data=(X_test, y_test),epochs=500,callbacks =[earlystopping])
    print(model.evaluate(X_test,y_test))
     # "Accuracy"
    plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
    plt.title('model accuracy')
plt.ylabel('accuracy')
    plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
    plt.show()
 # "Loss"
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
     plt.show()
```

Diabetes Dataset Experiments

Diabetes Data Sprit Train-Test

```
import numpy as np
import random
normal = []
diabet = []
infile = open("diabetes0.csv", "r")
for line in infile:
   x = line.split(',')
   if len(x) > 0:
       x = list(map(float, x))
       if x[8] == 1:
           diabet.append(x)
       else:
           normal.append(x)
infile.close()
prob = 0.2
trainset = []
testset = []
for k in range(len(diabet)):
    p = random.randint(0,10000)/10000.
    if p > 0.2:
       trainset.append(diabet[k][:8]+[diabet[k][8]])
    else:
        testset.append(diabet[k][:8]+[diabet[k][8]])
taken = [False]*len(normal)
setsize = 0
while setsize < len(diabet):
   k = random.randint(0,len(normal)-1)
    if not taken[k]:
       p = random.randint(0,10000)/10000.
        if p > 0.2:
            trainset.append(normal[k][:8]+[normal[k][8]])
        else:
           testset.append(normal[k][:8]+[normal[k][8]])
        setsize += 1
       taken[k] = True
outtrain = open('diabetes-all-train.csv', 'w')
for x in trainset:
    for i in range(8):
       outtrain.write(str(x[i])+',')
   outtrain.write(str(x[8])+'\n')
outtrain.close()
outtest = open('diabetes-all-test.csv', 'w')
for x in testset:
   for i in range(8):
       outtest.write(str(x[i])+',')
    outtest.write(str(x[8])+'\n')
outtest.close()
```

Diabetes Model Maker and Prepare Train

```
def model_maker():
    global model
    global noise_model
    model = Sequential()
    model.add(Dense(32,input_dim=8,activation='tanh',use_bias=True))
    model.add(Dense(1,activation='sigmoid',use_bias=True))
    model.compile(optimizer='adam',
        loss='binary_crossentropy', # Loss
        metrics=['accuracy'])
    model.optimizer.lr.assign(0.001)
def prepare_train(data):
    global model,x_train,X_test,y_train,y_test
    X_train, X_test, y_train, y_test = split_test(data.iloc[:,:-1],data.iloc[:,-1])
    X_train= X_train.to_numpy()
    y_train= y_train.to_numpy()
    y_test= y_test.to_numpy()
    y_test= y_test.to_numpy()
    print(y_test)
    model_maker()
```

Import Diabetes Data

```
: diabetes = pd.read_csv('diabetes-all-train.csv')
diabetes_noise9 = pd.read_csv('noise9 diabetes dataset.csv')
diabetes_noise18 = pd.read_csv('noise18 diabetes dataset.csv')
diabetes_noise27 = pd.read_csv('noise27 diabetes dataset.csv')
: data = [diabetes,diabetes_noise9,diabetes_noise18,diabetes_noise27]
data_name = ['diabetes dataset','diabetes noise9 dataset','diabetes noise18 dataset','diabetes noise27 dataset']
```

Breast Cancer Dataset Experiments

Breast Cancer Data Sprit Train-Test

```
normal = []
Bcancer = []
infile = open("breast-cancer1.csv", "r")
for line in infile:
    x = line.split(',')
    if len(x) > 0:
        x = list(map(float, x))
        if x[30] == 1:
            Bcancer.append(x)
        else:
            normal.append(x)
infile.close()
prob = 0.3
trainset = []
testset = []
for k in range(len(Bcancer)):
    p = random.randint(0,10000)/10000.
    if p > 0.3:
        trainset.append(Bcancer[k][:30]+[Bcancer[k][30]])
    else:
        testset.append(Bcancer[k][:30]+[Bcancer[k][30]])
taken = [False]*len(normal)
setsize = 0
while setsize < len(Bcancer):</pre>
   k = random.randint(0,len(normal)-1)
    if not taken[k]:
        p = random.randint(0,10000)/10000.
        if p > 0.2:
            trainset.append(normal[k][:30]+[normal[k][30]])
        else:
            testset.append(normal[k][:30]+[normal[k][30]])
        setsize += 1
        taken[k] = True
outtrain = open('BreastCancer-all-train.csv', 'w')
for x in trainset:
    for i in range(30):
        outtrain.write(str(x[i])+',')
    outtrain.write(str(x[30])+'\n')
outtrain.close()
outtest = open('BreastCancer-all-test.csv', 'w')
for x in testset:
    for i in range(30):
        outtest.write(str(x[i])+',')
   outtest.write(str(x[30])+'\n')
outtest.close()
```

Breast-Cancer Data Model Maker and prepare Train

Breast-Cancer Import Data

Smoking Experiments

Smoking Data Sprit Train-Test

```
import numpy as np
import random
no = []
yes = []
infile = open("Smoking0.csv", "r")
for line in infile:
   x = line.split(',')
    if len(x) > 0:
       x = list(map(float, x))
        if x[23] == 1:
           yes.append(x)
        else:
           no.append(x)
infile.close()
prob = 0.2
trainset = []
testset = []
for k in range(len(yes)):
    p = random.randint(0,10000)/10000.
    if p > 0.2:
        trainset.append(yes[k][:23]+[yes[k][23]])
    else:
       testset.append(yes[k][:23]+[yes[k][23]])
taken = [False]*len(no)
setsize = 0
while setsize < len(yes):</pre>
    k = random.randint(0,len(no)-1)
    if not taken[k]:
        p = random.randint(0,10000)/10000.
        if p > 0.2:
            trainset.append(no[k][:23]+[no[k][23]])
        else:
            testset.append(no[k][:23]+[no[k][23]])
        setsize += 1
        taken[k] = True
outtrain = open('smoking-all-train.csv', 'w')
for x in trainset:
    for i in range(23):
        outtrain.write(str(x[i])+',')
    outtrain.write(str(x[23])+'\n')
outtrain.close()
outtest = open('smoking-all-test.csv', 'w')
for x in testset:
    for i in range(23):
        outtest.write(str(x[i])+',')
    outtest.write(str(x[23])+'\n')
outtest.close()
```

Smoking Data Model Maker and Prepare Train

```
def model_maker():
    global model
    global noise_model
    model = Sequential()
    model.add(Dense(10,input_dim=18,activation='tanh',use_bias=True))
    model.add(Dense(10,activation='tanh',use_bias=True))
    model.add(Dense(1,activation='sigmoid',use_bias=True))
    model.compile(optimizer='adam',
        loss='binary_crossentropy', # Loss
        metrics=['accuracy'])
    model.optimizer.lr.assign(0.001)
def prepare_train(data):
    global model,X_train,X_test,y_train,y_test
    X_train,X_test, y_train, y_test = split_test(data.iloc[:,:-1],data.iloc[:,-1])
    X_train= X_train.to_numpy()
    y_train= y_train.to_numpy()
    y_test= y_test.to_numpy()
    y_test= y_test.to_numpy()
    print(y_test)
    model_maker()
```

Smoking Import Data

```
smoking = pd.read_csv('Smoking-all-train.csv')
smoking_noise9 = pd.read_csv('noise9 smoking Dataset.csv')
smoking_noise18 = pd.read_csv('noise18 smoking Dataset.csv')
smoking_noise27 = pd.read_csv('noise27 smoking Dataset.csv')
data = [smoking,smoking_noise9,smoking_noise18,smoking_noise27 ]
data_name = ['smoking Dataset','smoking noise9 Datsets','smoking noise18 Datsets','smoking noise27 Datsets']
```

Wine Quality Experiment

Wine Quality Sprit Train-Test

```
import numpy as np
import random
good = []
bad = []
infile = open("winequality-red1.csv", "r")
for line in infile:
   x = line.split(',')
    if len(x) > 0:
       x = list(map(float, x))
        if x[12] == 1:
           good.append(x)
        else:
           bad.append(x)
infile.close()
prob = 0.2
trainset = []
testset = []
for k in range(len(yes)):
    p = random.randint(0,10000)/10000.
    if p > 0.2:
        trainset.append(good[k][:12]+[good[k][12]])
    else:
       testset.append(good[k][:12]+[good[k][12]])
taken = [False]*len(no)
setsize = 0
while setsize < len(yes):
    k = random.randint(0,len(no)-1)
    if not taken[k]:
        p = random.randint(0,10000)/10000.
        if p > 0.2:
            trainset.append(bad[k][:12]+[no[k][12]])
        else:
           testset.append(no[k][:12]+[no[k][12]])
        setsize += 1
        taken[k] = True
outtrain = open('winequality-red-all-train.csv', 'w')
for x in trainset:
    for i in range(12):
        outtrain.write(str(x[i])+',')
    outtrain.write(str(x[12])+'\n')
outtrain.close()
outtest = open('winequality-red-all-test.csv', 'w')
for x in testset:
    for i in range(12):
        outtest.write(str(x[i])+',')
    outtest.write(str(x[12])+'\n')
outtest.close()
```

Wine Quality Data Model Maker and Prepare Train

```
from sklearn.model_selection import train_test_split
def split_test(X,y):
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
    return X_train, X_test, y_train, y_test
def model maker():
   global model
   global noise_model
   model = Sequential()
   model.add(Dense(10,input_dim=12,activation='tanh',use_bias=True))
   model.add(Dense(1,activation='sigmoid',use_bias=True))
   model.compile(optimizer='adam',
              loss='binary_crossentropy', # Loss
              metrics=['accuracy'])
   model.optimizer.lr.assign(0.001)
def prepare train(data):
   global model,X_train,X_test,y_train,y_test
   X_train, X_test, y_train, y_test = split_test(data.iloc[:,:-1],data.iloc[:,-1])
   X_train= X_train.to_numpy()
   y_train= y_train.to_numpy()
   X_test= X_test.to_numpy()
   y_test= y_test.to_numpy()
   print(y_test)
   model maker()
```

Wine Quality Import Data

Heart Dataset Experiment

Heart Disease Sprit Train-Test

```
import numpy as np
import random
normal = []
heart = []
infile = open("Heart1.csv", "r")
for line in infile:
   x = line.split(',')
    if len(x) > 0:
        x = list(map(float, x))
        if x[13] == 1:
            heart.append(x)
        else:
            normal.append(x)
infile.close()
prob = 0.2
trainset = []
testset = []
for k in range(len(normal)):
    p = random.randint(0,10000)/10000.
    if p > 0.2:
        trainset.append(normal[k][:13]+[normal[k][13]])
    else:
        testset.append(normal[k][:13]+[normal[k][13]])
taken = [False]*len(heart)
setsize = 0
while setsize < len(normal):
    k = random.randint(0,len(heart)-1)
    if not taken[k]:
        p = random.randint(0,10000)/10000.
        if p > 0.2:
            trainset.append(heart[k][:13]+[heart[k][13]])
        else:
            testset.append(heart[k][:13]+[heart[k][13]])
        setsize += 1
        taken[k] = True
outtrain = open('heart-all-train.csv', 'w')
for x in trainset:
    for i in range(13):
        outtrain.write(str(x[i])+',')
    outtrain.write(str(x[13])+'\n')
outtrain.close()
outtest = open('heart-all-test.csv', 'w')
for x in testset:
    for i in range(13):
        outtest.write(str(x[i])+',')
    outtest.write(str(x[13])+'\n')
outtest.close()
```

Heart Disease Data Model Maker and Prepare Train

Heart Disease Import Data

```
: heart = pd.read_csv('heart-all-train.csv')
heart_noise9 = pd.read_csv('noise9 Heart Dataset.csv')
heart_noise18 = pd.read_csv('noise18 Heart Dataset.csv')
heart_noise27 = pd.read_csv('noise27 Heart Dataset.csv')

: data = [heart,heart_noise9,heart_noise18,heart_noise27]
data_name = ['Heart Dataset','Heart noise9 Dataset','Heart noise18 Dataset','Heart noise27 Dataset']
```

Result

For the result, we intend to train the model for each experiment for several times to ensure that the results of each experiment are invariable.

The accuracy value and accuracy graph of each dataset are shown below.

Breast Cancer Experiment Result

Breast Cancer Original Data Result

1st round early stop at epoch 53, accuracy 0.8594

2nd round early stop at epoch 149, accuracy 0.9062

3rd round early stop at epoch 102, accuracy0.8750

Breast Cancer Noise (1/9) Data

1st round early stop at epoch 31, accuracy 0.8438

2nd round early stop at epoch 48, accuracy 0.7812

Breast Cancer Noise (1/18) Data Result

1st round early stop at epoch 64, accuracy 0.8438

2nd round early stop at epoch 65, accuracy 0.8438

3rd round early stop at epoch 56, accuracy 0.8672

Breast Cancer Noise (1/27) Data Result

1st round early stop at epoch 61 accuracy 0.7891

2nd round early stop at epoch 52, accuracy 0.7500

3rd round early stop at epoch 44, accuracy 0.7891

Diabetes Experiment Result

Diabetes Original Data Result

1st round early stop at epoch 134, accuracy 0.6279

2nd round early stop at epoch 86, accuracy 0.5349

3rd round early stop at epoch 93, accuracy 0.6279

Diabetes Noise (1/9) Data Result

1st round early stop at epoch 69, accuracy 0.6353

2nd round early stop at epoch 95, accuracy 0.6118

3rd round early stop at epoch 146, accuracy 0.6000

Diabetes Noise (1/18) Data Result

1st round early stop at epoch 74, accuracy 0.6118

2nd round early stop at epoch 97, accuracy 0.6471

3rd round early stop at epoch 80, accuracy 0.5412

Diabetes Noise (1/27) Data Result

1st round early stop at epoch 75, accuracy 0.7059

2nd round early stop at epoch 88, accuracy 0.6353

3rd round early stop at epoch 86, accuracy 0.6471

Smoking Experiment Result

Smoking Original Data Result

1st round early stop at epoch 31, accuracy 0.7138

2nd round early stop at epoch 67, accuracy 0.7013

3rd round early stop at epoch 31, accuracy 0.7079

Smoking Noise (1/9) Data Result

1st round early stop at epoch 34, accuracy 0.6400

3rd round early stop at epoch 51, accuracy 0.6734

Smoking Noise (1/18) Data Result

1st round early stop at epoch 51, accuracy 0.6928

2nd round early stop at epoch 78, accuracy 0.7033

3rd round early stop at epoch 59, accuracy 0.6587

Smoking Noise (1/27) Data Result

1st round early stop at epoch 71, accuracy 0.7019

3rd round early stop at epoch 58, accuracy 0.6766

Wine Quality Experiment Result

Wine Quality Original Data Result

1st round early stop at epoch 272, accuracy 0.7857

2nd round early stop at epoch 382, accuracy 0.8286

3rd round early stop at epoch 297, accuracy 0.8000

Wine Quality Noise (1/9) Data Result

1st round early stop at epoch 217, accuracy 0.7122

2nd round early stop at epoch 144, accuracy 0.6835

3rd round early stop at epoch 275, 0.7698

Wine Quality Noise (1/18) Data Result

1st round early stop at epoch 226, accuracy 0.7914

2nd round early stop at epoch 206, accuracy 0.7338

3rd round early stop at epoch 282, accuracy 0.7842

Wine Quality Noise (1/27) Data Result

1st round early stop at epoch 127, accuracy 0.8129

2nd round early stop at epoch 104, accuracy 0.7410

3rd round early stop at epoch 198, accuracy 0.7554

Heart Disease Experiment Result

Heart Disease Original Data Result

1st round early stop at epoch 183, accuracy 0.8250

2nd round early stop at epoch 118, accuracy 0.7563

3rd round early stop at epoch 92, accuracy 0.7563

Heart Disease Noise (1/9) Data Result

1st round early stop at epoch 113, accuracy 0.7555

2nd round early stop at epoch 97, accuracy 0.8495

3rd round early stop at epoch 107, accuracy 0.8621

Heart Disease Noise (1/18) Data Result

1st round early stop at epoch 135, accuracy 0.8527

2nd round early stop at epoch 89, accuracy 0.8746

3rd round early stop at epoch 64, accuracy 0.8683

Heart Disease Noise (1/27) Data Result

1st round early stop at epoch 90, accuracy 0.8652

2nd round early stop at epoch 119, accuracy 0.8589

3rd round early stop at epoch 65, accuracy 0.7743

Result Table

Breast Cancer	Original	Noise1/9	Noise1/18	Noise1/27
1 st round	0.8594	0.8438	0.8438	0.7891
2 nd round	0.9062	0.7812	0.8438	0.7500
3 rd round	0.8750	0.8047	0.8672	0.7891
Average	0.8802	0.8099	0.8516	0.7760

Diabetes	Original	Noise1/9	Noise1/18	Noise1/27
1 st round	0.6279	0.6353	0.6118	0.7059
2 nd round	0.5349	0.6118	0.6471	0.6353
3 rd round	0.6279	0.6000	0.5412	0.6471
Average	0.5969	0.6157	0.6000	0.6627

Average	0.7076	0.6597	0.6849	0.6894
3 rd round	0.7079	0.6734	0.6587	0.6766
2 nd round	0.7013	0.6658	0.7033	0.6899
1 st round	0.7138	0.6400	0.6928	0.7019
Smoking	Original	Noise1/9	Noise1/18	Noise1/27

Wine Quality	Original	Noise1/9	Noise1/18	Noise1/27
1 st round	0.7857	0.7122	0.7914	0.8129
2 nd round	0.8286	0.6835	0.7338	0.7410
3 rd round	0.8000	0.7698	0.7842	0.7554
Average	0.8047	0.7218	0.7698	0.7697

Heart Disease	Original	Noise1/9	Noise1/18	Noise1/27
1 st round	0.8250	0.7555	0.8527	0.8652
2 nd round	0.7563	0.8495	0.8746	0.8589
3 rd round	0.7563	0.8621	0.8683	0.7743
Average	0.7792	0.8223	0.8652	0.8328

Conclusion

Dataset	Original	Noise1/9	Noise1/18	Noise1/27
Breast Cancer	0.8802	0.8099	0.8516	0.7760
Diabetes	0.5969	0.6157	0.6000	0.6627
Smoking	0.7076	0.6597	0.6849	0.6894
Wine Quality	0.8047	0.7218	0.7698	0.7697
Heart Disease	0.7792	0.8223	0.8652	0.8328

From the results that we get from each dataset with the original and noise injection in each scale value. We could clearly see from the table that the noise injection technique doesn't make impact on training the model that much. Just only for the heart disease dataset that the accuracy from training noise is slightly higher than the accuracy of training the original data,

To sum up, based on this experiment, the noise injection technique doesn't make significant improvement to the generalization of neural network.

References

[1] Explicit Regularisation in Gaussian Noise Injections Research/Retrieved

Oct 18,2022<<u>https://arxiv.org/pdf/2007.07368.pdf</u>>

[2] Train Neural Network With noise/Retrieved

Oct 18,2022<<u>https://machinelearningmastery.com/train-neural-networks-with-noise-to-reduce-overfitting/</u>>

[3] Noise Affect generalization/Retrieved Oct 18,2022<<u>https://ai.stackexchange.com/questions/2/how-does-noise-affect-generalization</u>>

[4] Kaggle Datasets/retrieved Sep 10,2022<<u>https://www.kaggle.com/</u>>

[5] Data finder/ retrieved Oct 3,2022<u>https://datasetsearch.research.google.com/</u>

[6] Breast Cancer Dataset/retrieved Sep 10,2022<<u>https://www.kaggle.com/datasets/uciml/breast-</u> <u>cancer-wisconsin-data</u>>

[7] Diabetes Dataset/retrieved Sep 10,2022<<u>https://www.kaggle.com/datasets/mathchi/diabetes-</u> <u>data-set</u>>

[8] Smoking Dataset/retrieved Sep 10,2022<<u>https://www.kaggle.com/datasets/kukuroo3/body-signal-of-smoking</u>>

[9] Wine Quality Dataset/retrieved Sep 10,2022< <u>https://www.kaggle.com/datasets/uciml/red-wine-guality-cortez-et-al-2009</u>>

[10] Heart Disease Dataset/retrieved Sep

10,2022<<u>https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset</u>>