
Algorithm Design - Term Project
CSX 3009 (541)

By : Ekkasith Singmaneechai 6213934

 Saranya Sangsuk-iem 6237407

• 1. Problem Overview

• 2. Problems Analysis

• 3. Solutions

• 4. Conclusion

• 5. References

OUTLINE

Problems : 875. Koko Eating
Bananas Difficulty : Medium

Problem Overview:

Koko loves to eat bananas. There are n piles of bananas,
the ith pile has piles[i] bananas. The guards have gone and will
come back in h hours.

Koko can decide her bananas-per-hour eating speed of k.
Each hour, she chooses some pile of bananas and
eats k bananas from that pile. If the pile has less than k bananas,
she eats all of them instead and will not eat any more bananas
during this hour.

Koko likes to eat slowly but still wants to finish eating all the
bananas before the guards return.

Return the minimum integer k such that she can eat all the
bananas within h hours.

n Piles piles[0] … … piles[i]
Time Left : h

Koko wants to Annihilate all bananas before guard come

Objective : find the right k value
Banana per Hour: k Condition : Must be the

longest time possible.

Koko the Monke

piles[i] piles[i] piles[i] piles[i]

N Piles

Example & Constraints

Input : piles = [3,6,7,11], h = 8

Output: 4

Example 1:

Input : piles = [30,11,23,4,20], h = 5

Output: 30

Example 2:

Input : piles = [30,11,23,4,20], h = 6

Output: 23

Example 3:

Example & Constraints

Constraints:
• 1 <= piles.length <= 104

• piles.length <= h <= 109

• 1 <= piles[i] <= 109

Problem Analysis

Ex. If she eats 3 bananas per hour, it takes her 2 hours to eat a pile of 4 bananas.

 = n piles of bananas

= y time taken

 = x bananas per hour

Problem Analysis

h >
The first constraint of the problem is that Koko has to eat all the piles within

h hours, where h is no less than the number of piles.

Workable Speed Unworkable Speed

Finish within h hours Cannot finish within h hours

Solution 1
– Brute Force –

What is Brute Force?

● Solve the problem by instructing to do a 'loop' until you get an answer.
○ Bubble sort, Selection sort

How it works?
1. Pick up objects one by one
2. Check whether each object meets the conditions

a. pick up the next object. If the object runs out, then stops.
b. check if the object is the one you want to search for.
c. if yes, return the object.
d. if not, go back to step a.

How Brute Force solve the problem?

3 6 7 11

currTime = [NumberOfBananas / speed]
totalTime = prevTotalTime + currTime

How Brute Force solve the problem? Workable Speed

3 6 7 11

I eat 5 bananas per hour.
Koko:

I will return in h = 8 hours.
Guards:

How Brute Force solve the problem? Workable Speed

3 6 7 11

currTime = [NumberOfBananas / speed]
totalTime = prevTotalTime + currTime

I eat 5 bananas per hour.
Koko:

I will return in h = 8 hours.
Guards:

currTime: 3 / 5 = 1
totalTime: 0 + 1 = 1

currTime: 6 / 5 = 2
totalTime: 1 + 2 = 3

currTime: 7 / 5 = 2
totalTime: 3 + 2 = 5

currTime: 11 / 5 = 3
totalTime: 5 + 3 = 8

How Brute Force solve the problem? Unworkable Speed

3 6 7 11

currTime = [NumberOfBananas / speed]
totalTime = prevTotalTime + currTime

I eat 3 bananas per hour.
Koko:

I will return in h = 8 hours.
Guards:

currTime: 3 / 3 = 1
totalTime: 0 + 1 = 1

currTime: 6 / 3 = 2
totalTime: 1 + 2 = 3

currTime: 7 / 3 = 3
totalTime: 3 + 3 = 6

currTime: 11 / 3 = 4
totalTime: 6 + 4 = 10

Brute Force Solution

Does the order by which Koko eats
affect the overall time?

NO

Brute Force Solution - Algorithm

1. Start at speed = 1.

2. Given the current speed, calculate how many hours Koko needs to eat
all of the piles.
a. If Koko cannot finish all piles within h hours, speed = speed + 1
b. If koko can finish all piles within h hours, go to step 3.

3. Return the speed as the answer.

Implementation

Submission

Complexity Analysis - Time complexity

Let n be the length of input array piles
and m be the upper bound of elements in piles.

● Time complexity: O(nm)
○ It takes O(n) times.
○ Try every smaller eating speed from 1 to m

Complexity Analysis - Space complexity

● Space complexity: (O)1
○ Constant space is required to do calculations.

Solution 2
– Binary Search –

How Binary Search Solve the Problem ?

Link: https://www.geeksforgeeks.org/binary-search/

https://www.geeksforgeeks.org/binary-search/

What we know?

Things we know from Brute Force:

1. The order doesn’t matter.
2. We know that if Koko can eat the banana at speed n then she

can finished it with the speed of n + 1, n+2, and so on.
3. From 2. it means that if Koko can’t finished

it in n so can’t she in n-1.

How Binary Search Solve the Problem ?

Speed(k) Time Taken to eats all piles of banana

1 …

… N-3

2 N-2

3 N-1

4 N

5 N+1

… N+2

Max(piles) …

for N is the first workable speed, which is the target

Binary Search

Once we set the boundary we can apply the Binary Search with
1 is the left boundary and max banana piles as the upper or right
boundary

1
left

… Start Value
middle

 (left+right)/2

… Max(pile)
right

Example:

Let’s say that the given array are [1,3,5,7,9], and h = 8 Based
on the shown diagram earlier we will get the value as follows

(always initiate as 1)
1

left

… Start Value
(left+right)/2

5
middle

… Max(pile)
9

right

Example:

We then check if value 5 is a doable speed or not
by used the value to check if Koko can finished eating in time
within h = 8 hours before guard arrives.

Pile(0) = 1/5 1 hour = 1+0 = 1
Pile(1) = 3/5 1 hour = 1+1 = 2
Pile(2) = 5/5 1 hour = 1+2 = 3
Pile(3) = 7/5 2 hour = 2+3 = 5
Pile(4) = 9/5 2 hour = 5+2 = 7 hours total

Example: If the middle is doable

You can see that with speed 5 Koko took 7 hour to eat all the
banana before guards arrives which within the time frame. It
means that from middle to right (5 to 9) is the doable speed
but not desirable because Koko want to eats as slow as
possible so we can set the middle as right instead.

(always initiate as 1)
1

left

… (left+right)/2
3

middle

… Max(pile)
5

right

Example: If the middle is NOT doable

However if it’s not then we set the middle value to left
instead of right.

5
left

… (left+right)/2
7

middle

… Max(pile)
9

right

Example: When do we know if the result is reach?

The result is reach when the left = right value. we can see
that in this case the first middle value, 5 is the target value.

5
left

…
middle

… Max(pile)
5

right

Binary Search Complexity Analysis

Let n = input array piles and m = maximum number of bananas in
a single pile from piles.

Time complexity: O(n⋅logm)

In Binary Search, it takes log m to check from the start value to
finished

However, it require 1 for loop to calculate the piles of banana if
it’s satisfy the condition or not, which makes it total n⋅logm

Binary Search Complexity Analysis

Space complexity: O(1)

For each eating speed middle, we iterate over the
array and calculate the total hours Koko spends, which
costs constant space.
Therefore, the overall space complexity is O(1).

Algorithm
1. Initialize the two boundaries of the binary search as left = 1, right = max(piles).

 2. Get the middle value from left and right, that is, middle = (left + right) / 2, this is Koko's
eating speed during this iteration.

 3.Iterate over the piles and check if Koko can eat all the piles within h hours given this
eating speed of middle.

 4.If Koko can finish all the piles within h hours, set right equal to middle signifying that all
speeds greater than middle are workable but less desirable by Koko. Otherwise, set left
equal to middle + 1 signifying that all speeds less than or equal to middle are not
workable.

5.Repeat the steps 2, 3, and 4 until the two boundaries overlap, i.e., left = right, which
means that we have found the minimum speed by which Koko could finish eating all the
piles within h hours. We can return either left or right as the answer.

Implementation

Submission

Program Example

Test Case:

Result:

Program Example

Test Case: 10000 piles

Program Example

Result:

Comparison

Comparison

10000 piles

Comparison

Brute Force Result:

Binary Search Result:

Thank You!

References

•https://leetcode.com/problems/koko-eating-banan
as/solution/

•https://www.geeksforgeeks.org/binary-search/

https://leetcode.com/problems/koko-eating-bananas/solution/
https://leetcode.com/problems/koko-eating-bananas/solution/
https://www.geeksforgeeks.org/binary-search/

