
Senior Project I Report

MIDI Signals Manipulating
Console for Live
Multiple-Keyboard
Performance

Project Advisor
Asst. Prof. Dr. Thitipong Tanprasert

Committee Members
Asst. Prof. Dr. Benjawan Srisura
A. Chayapol Moemeng

Submitted By
Kanyarat Nalucupchanchai
Napatsorn Kawaree
Taechasit Sarasitt

IT 4291 Senior Project I (1/2021)

1

Senior Project Approval

Project title: Text Classification for Education Publication

Academic Year: 1/2021

Authors: Tachasit Sarasitt (6110032)
Napatsorn Kawaree (6111099)
Kanyarat Nalucupchanchai (6115308)

Project Advisor: Asst. Prof. Dr. Thitipong Tanprasert

The Senior Project committee’s cooperation between the Department of Computer Science

and Information Technology, Vincent Mary School of Science and Technology, Assumption

University had approved this Senior Project. The Senior Project in partial fulfilment of the

requirement for the degree of Bachelor of Science in Computer Science and Information

technology.

Approval Committee:

…………………………..

(Asst. Prof. Dr. Thitipong Tanprasert)

Project Advisor

…………………………..

(Asst. Prof. Dr. Benjawan Srisura)

Committee Member

…………………………..

(A. Chayapol Moemeng)

Committee Member

2

Abstract

Nowadays, music concerts or live performances need good music equipment especially ones

that make the performance turn out entertaining for the audience, have its unique point, and

multiple keyboards is one of the most important equipment. Keyboard-type device that doesn't

have a built-in sound source is called a MIDI controller. There are two types of MIDI

controllers: performance controllers that generate notes and are used to perform music, and

controllers that may not send notes, but transmit other types of real-time events. Many devices

are some combination of the two types. Keyboard-type device needs to be connected to other

devices that are the source of the sound, through MIDI protocol. Yet, existing musical

instrument digital interfaces are designed for sound engineers, which are not easy to use for

real-time performance by musicians of typical instruments, even by pianists. In this project,

we studied the technologies involved with modern digital sound productions, then created an

easy and futuristic musical instrument as a digital interface for multiple keyboards that

supports live music performance, is not more complicated to operate than an organ, and

utilizes a potentially unlimited repertoire of sounds.

3

Table Of Contents

Chapter 1: Introduction 6
1.1 Problem Statement 7
1.2 Scope of the project 7

Chapter 2: Related Work 8
2.1 Protocol of MIDI 8
2.2 MIDI transport and MIDI standard 9
2.3 Waveform 10
2.3 Related work 10

Chapter 3: Proposed Methodology 12
3.1 Methodology 12

3.1.1 Mido 12
3.1.2 Qt 12
3.1.3 Qt Designer 13
3.1.4 Tracktion Waveform 14
3.1.5 LoopMIDI 14
3.1.6 MIDI-OX 15

Chapter 4: Design of The System (or Work) 16
4.1 System Design 16

4.1.1 Inspired design 16
4.1.2 UI Prototype with Qt Designer 17
4.1.3 Waveform / Soundfront 21

Chapter 5: Result 22
5.1 System Architecture 22
5.2 Installation Prerequisites 25
5.3 User Interface and Function breakdown 26
5.4 Source code 28

Chapter 6: Conclusion 29

References 30

4

Table Of Contents

Chapter 2: Related Work 8
Figure 2.1: An example of MIDI message 9
Figure 2.2: A related work (Hauptwerk) 10

Chapter 3: Proposed Methodology 12
Figure 3.1: The screenshot of Qt Designer on Windows 13

Chapter 4: Design of The System (or Work) 16
Figure 4.1: Yamaha electone STAGEA ELS-01C 16
Figure 4.2: First design of Musical Instrument Digital Interface 17
Figure 4.3: Second design of Musical Instrument Digital Interface 18
Figure 4.4: Third design of Musical Instrument Digital Interface 19
Figure 4.5: Fourth design of Musical Instrument Digital Interface 20
Figure 4.6: Waveform configuration screen 21

Chapter 5: Result 22
Figure 5.1: An overview of system architecture 22
Figure 5.2: MIDI handler flowchart 23
Figure 5.3: Volume control flowchart 24
Figure 5.4: Final design of Musical Instrument Digital Interface, Main window 26
Figure 5.5: Final design of Musical Instrument Digital Interface, Setting window 27
Figure 5.6: Comparison between light mode and dark mode. 28

5

Chapter 1: Introduction

MIDI is short for Musical Instrument Digital Interface. It’s a protocol that allows computers,

musical instruments, and other hardware to communicate. MIDI is a communication standard

that allows digital music gear to speak the same language. A MIDI keyboard or controller

keyboard is typically a piano-style electronic musical keyboard, often with other buttons,

wheels, and sliders, used for sending MIDI signals or commands over a USB or MIDI 5-pin

cable to other musical devices or computers. MIDI keyboard is a very common music

equipment among musicians because MIDI gives musicians the chance to edit performances

note-by-note or entire sections of music through features like quantizing. MIDI can be used as

a versatile tool for writing, recording, and performing. It gives musicians instant access to a

universe of sounds they wouldn't have had access to before

In the general market, there are piano, organ, electone, These have their own uniqueness.

Playing the organ and piano are similar in technique. Electone (with bass pedal legs, double

keys) will have another way to play because the bass is played with the left foot and use the

right hand to play on the upper keyboard and left hand on lower keyboard. The right foot

controls the volume and the Rhythm box. It will be an electronic system with bass, drum,

chords, buzzing with many different rhythms. This electronic keyboard is also popularly used

as an instrument in a band because there are many musical instruments to choose from.

However, an electronic organ is a tool for an organist only and it cannot create modern sounds

unlike electone and the price is very high in the market. Our project is a MIDI designed for

everyone or musician in particular to access and get their hands on a very convenient and

easy-to-use and simple MIDI keyboard.

6

1.1 Problem Statement

In order to facilitate digital audio technology in providing flexible arrangement of sounds for

a musician to perform in live mode, while keeping minimal dependence on specific hardware,

a software is to be developed as a generic console of a multiple-keyboard musical instrument.

The user can connect MIDI-controller keyboards to the PC running the software. The software

provides user-friendly interface for selecting and mixing sounds, for selecting rhythm and

tempo, for saving and restoring sounds arrangements as presets that can be recalled on the fly,

and manages all the MIDI outputs to produce the actual sounds through Digital Audio

Workstation. The user interface is expected to utilize touch-screen technology, so that all the

buttons and continuous control devices can be made totally virtual.

1.2 Scope of the project

● The software will be developed using Python as programming language, Mido as

MIDI library, and Qt designer as user interface design software.

● We use Tracktion Waveform Digital Audio Workstation (DAW) to turn MIDI signals

into sound.

● The PC’s specification must support ASIO audio standard or a compatible one. ASIO

is required for fast real-time audio response to the MIDI signals.

7

Chapter 2: Related Work

According to our research on the relevant tasks of MIDI Signals Manipulating Console for

Live Multiple-Keyboard Performance, there does not have any existing interface or similar

work with our project that can really meet the needs of users or musicians. Therefore, we have

adapted problems encountered in related works and similar to our work. Other file formats

from research on related work have been listed below.

MIDI or Musical Instrument Digital Interface is a technical standard that describes a

communications protocol, digital interface, and electrical connectors that connect a wide

variety of electronic musical instruments, computers, and related audio devices for playing,

editing, and recording music. No audio signals are sent via MIDI. Instead MIDI works as a

digital signal (0s and 1s). A series of binary digits. Each instrument or computer understands

and then responds to these 1s and 0s, which are combined into 8-bit messages supporting data

rates of up to 31,250 bits per second.

2.1 Protocol of MIDI

It is a standard protocol invented in 1982 as a music communication system of electronic

music devices such as computers, synthesizers, sequencers, sound modules and samplers,

which use digital electrical signals to transmit data between connected devices to musical

note. and various sound control settings.

The MIDI message is up to 3-bytes long and consists of 3 parts, status byte, data byte 1, and

data byte 2. The status byte is mandatory, it describes the functionality of the message

alongside with the channel it operates on. While the optional data byte indicates the detail of

the message. The example of MIDI message is shown in figure 2.1 below.

8

Figure 2.1: An example of MIDI message

2.2 Midi transport and MIDI standard
The original MIDI 1.0 Specification called for using a 5-Pin DIN cable to connect MIDI

compatible devices, but today there are many different "transports" capable of carrying MIDI

data and the specification for 5-Pin DIN has been updated. So MIDI 2.0 was there to change

the musical life. MIDI 2.0 was released in 2020 by representatives Yamaha, Roli, Microsoft,

Google, and the MIDI Association. Its significant update adds bidirectional communication

while maintaining backwards compatibility. MIDI 2.0 has the new Universal MIDI Packet

format for high-speed transports which supports both MIDI 1.0 and MIDI 2.0 voice messages.

The Universal MIDI Packet is intended for high-speed transport such as USB and Ethernet

and is not supported on the existing 5-pin DIN connections. System Real-Time and System

Common messages are the same as defined in MIDI 1.0. This new packet format supports a

total of 256 MIDI channels instead of 16 channels. The resolution is higher for data

transmission as well as speed and control and increased transmission speed from 7 bits to 16

bits.

9

2.3. Waveform

Waveform audio or audio software is often used to mean the recorded sound itself. in order to

distinguish it from structured audio like, MIDI data. Examples of waveform programs are

Cakewalk, Sonar, Adobe, Tracktion, etc . These are digital audio workstations for sound

engineering. It is an electronic device or application used for recording sound, editing and

producing audio files such as songs, music pieces, speech or audio. But it is adequate for live

performance because it has recording delay compensation, low latency monitoring and latency

issues and it can not let the user play and manipulate the live performances on-the-fly.

Furthermore, these software’s user interfaces are too complex for live performance as well.

2.4 Related work

A related work is a well-known commercial program called Hauptwerk. Hauptwerk is a

German computer program available from Milan Digital Audio designed to allow playback or

live playback of pipe organ music using MIDI and recorded audio samples.

Figure 2.2: A related work (Hauptwerk)

The advantages of hauptwerk are perfect for church organists. It has many sounds provided in

the program. the power of Hauptwerk, including expression, tremulants, crescendo, bass and

melody couplers as well as a fully working combination system identical to the original organ

and All people can access this program.

10

Yet, there are some disadvantages, they are only for a church organist, as each Hauptwerk

software is an exact mock-up of a real church organ. All the sounds are fixed and thus

Hauptwerk can not be used to create pop or rock music like what music is like in the modern

world. Our project aim is to create an MIDI keyboard for users to be able to adjust volume

and sounds to create different types of music.

11

Chapter 3: Proposed Methodology

3.1 Methodology

We developed it as a generic console of a multiple-keyboard musical instrument. The software

is developed by using Python Language (Python3) and all methodology that we use for our

project development, there are Mido, Qt, Qt designer, Tracktion Waveform, LoopMIDI and

MIDI-OX.

3.1.1 Mido

We use the Mido (MIDI Objects for Python) library to interact with midi by treating midi as if

it were an object in python. Mido is created by Ole Martin Bjørndalen and many other

contributors. It is released as an open source library under the terms of MIT license. Mido can

interact with midi by both real-time processing and file read/write operations, and has full

support for all 18 messages defined by the MIDI standard. Mido has support for multiple

backends, which are RtMidi (default), PortMidi, Pygame, rtmidi-python, Amidi. We use

RtMidi as the backend in our software as it is recommended by the Mido developer.

The RtMidi, which Mido use it as backend, is a set of C++ classes which provides a concise

and simple, cross-platform API (Application Programming Interface) for realtime MIDI

input/output across Linux (ALSA & JACK), macOS / OS X (CoreMIDI & JACK), and

Windows (MultiMedia System) operating systems

3.1.2 Qt

Qt is a cross-platform application development framework for desktop, embedded and mobile.

Supported Platforms include Linux, OS X, Windows, VxWorks, QNX, Android, iOS,

BlackBerry, Sailfish OS and others. Qt is also a graphical user interface (GUI) framework, a

toolkit, that is used for developing software that can be run on different hardware platforms

and operating systems. Qt makes it easy to develop software with native-looking (to the OS it

12

is running on). For our project, Qt version 4.0 which generated from Qt Designer we used to

develop a framework.

3.1.3 Qt Designer

Qt Designer is a tool for quickly building graphical user interfaces with widgets from the Qt

GUI framework. It gives us a simple drag-and-drop interface for laying out components such

as buttons, text fields, combo boxes and more. Here is a screenshot of Qt Designer on

Windows:

Figure 3.1: The screenshot of Qt Designer on Windows

In our project, we use Qt Designer together with Python because it is a dynamic language that

lends itself well to rapid prototyping. Using its simple drag and drop interface, a GUI interface

can be quickly built without having to write the code. The UI design and backend

programming is done separately, which makes the software development process faster.

We use Python PyQt5 library to make the connection between the Qt file and Python program.

The UI element in the Qt file has its own unique ObjectName, which we link it with its

corresponding function in the Python program.

13

3.1.4 Tracktion Waveform

Tracktion Waveform is a Digital Audio Workstation (DAW) for recording and editing audio

and playing MIDI. The software is cross-platform, running on Apple macOS, Microsoft

Windows and Linux. Waveform is a rapidly evolving application specifically designed for the

needs of modern music producers. Specializing in creative and inspirational workflows and

avoiding features not explicitly needed to allow the app to remain surprisingly fun and

intuitive. While other apps try to appeal to broad user groups, for example film score, live

sound, performance and focus on music production.

The use of Waveform in our project is to turn the midi signal that has been manipulated from

our software into audible sound, since our software is only responsible for midi manipulation.

But in the real world applications, users can freely use other software as a midi receiver, or

even hardware if it is supported.

3.1.5 LoopMIDI

LoopMIDI is an application that can create virtual loopback MIDI ports. It makes use of the

virtualMIDI driver to create the virtual ports, but in addition to the virtual driver, it also offers

a way to control and configure the ports.

The virtual loopback MIDI-ports is used to interconnect applications on Windows that want to

open hardware-MIDI-ports for communication. The ports created are unique for each user and

only exist while the loopMIDI-application is running. So if we log-off, the created ports cease

to exist. LoopMIDI comes from the fact that the ports created with this tool will cease to exist

once the app is closed. They'll be up and running only while loopMIDI is also running, so we

will be able to avoid having the ports interfere with other apps and creating unwanted

situations. Furthermore, the ports are unique for each user.

The loopMIDI plays an important role in our project because we can test our program without

having to connect the hardware midi devices. Which facilitates software development.

14

3.1.6 MIDI-OX

MIDI-OX is a versatile utility that is great for troubleshooting faulty MIDI hardware devices.

It also acts as a System Exclusive SysEx) librarian, which allows you to send (dump) and

receive SysEx data. It can perform filtering and mapping of MIDI data streams. It displays

incoming MIDI streams, and passes the data to a MIDI output driver or the MIDI Mapper. It

also can generate MIDI data using the computer keyboard or the built-in control panel.

The role of MIDI-OX in our project is to test and debug the functionality of our software since

it can read the data inside the midi messages. We use this software to make sure that our

software is manipulating midi messages as it should.

15

Chapter 4: Design of The System (or Work)

4.1 System Design

For our project interface designing, we got an electone produced by Yamaha to be our inspired

design. We use the Qt designer program to develop our user interface designing for Musical

Instrument Digital Interface.

4.1.1 Inspired design

Figure 4.1: Yamaha electone STAGEA ELS-01C

In Figure 4.1, it is an electone produced by Yamaha and was released in the market in 2004.

We use Yamaha electone stagea els 01 as our inspired design. we adjusted the design to our

own design.

16

4.1.2 UI Prototype with Qt Designer
For our user interface designing, it is initially designed using a Top-Down approach. This is a

design coupled with coding to get the desired results first. Then we will continue to improve

the design customization. Our user interface designing is based on Qt. Designer program to

design for users to be easy to use and convenient, fast, uncomplicated in use. The interface

that we designed is developed in the following:

Figure 4.2: First design of Musical Instrument Digital Interface

In Figure 4.2, from the pictures you can see that we are starting to design little by little,

starting with users being able to source and it can adjust the volume. The source refers to the

Midi keyboard. The other side of the design is the part of output which is the receiver of the

Midi.

17

Figure 4.3: Second design of Musical Instrument Digital Interface

In Figure 4.3, we foresee that creating an example source is to allow users to choose and use it

more conveniently. The source that we have provided Piano, Electric Piano, Organ, Orchestral

and other. Single and Multiple that we have created to separate the work of the system. Single

can open only one sound in the respective source section. The Multiple section will be able to

open multiple sounds at the same time. In the balance section, it is not the balance of the

sound level from left and right speakers, but the balance between source 1 and source 2. As

for the volume level, we will adjust the volume of the Master Volume instead. Transpose is a

note change feature, e.g. Transpose +1 = change from C to C#. Preset is for the system to

remember the volume that we set and also we have a save button for saving preset.

18

Figure 4.4: Third design of Musical Instrument Digital Interface

In Figure 4.4, From the 2nd design picture, we have added a Drum generator to import the

sound file from outside and added 4 buttons which are Play button, Pause button, Stop button

and Outro button. When we click on the Play button, there will play from the Intro section

from the sound starting until the end and then play automatically at Pattern and outro

respectively. We also added Tempo in order to adjust the slow or fast speed of the imported

sound, the number is the tempo in the unit of beats per minute.

19

Figure 4.5: Fourth design of Musical Instrument Digital Interface

In Figure 4.5, the design of this stage was developed from the third design with modifications

to the Master. Volume to be different in the design of the sound adjustment. We've added

setting buttons, when we click, it will bring up the design window on the other side. The

setting window is to choose which source receives and transmits midi signal from which port.

20

4.1.3 Waveform / Soundfonts
In order to test the software we developed with the real-world application, we use Waveform

DAW as midi receiver software, and the open source Juicy SF audio plugin as a soundfont

player. For the soundfront file, we use publicly available GeneralUser GS v1.44.

Figure 4.6: Waveform configuration screen

In our testing environment, all midi messages from our software are sent to “LoopMIDI Port

2”. Then it duplicated the message into the virtual interface 2 to 6 and drum interface -(1). In

each virtual interface, the message is filtered to receive only the specific midi channel -(2),

“Virtual 2” only receives midi channel 2, “Virtual 3” only receives midi channel 3, and so on.

The drum channel is set to channel 10 to comply with General MIDI standards.

21

Chapter 5: Result

5.1 System Architecture

Figure 5.1: An overview of system architecture

Our software consists of 3 parts, Drum generator, Volume control module, and MIDI handler.

The Drum generator is the program that plays the percussion instruments pattern from the

MIDI file. It is useful in the case of users needing the percussion sounds, drum beats, and

patterns without having a drummer.

22

MIDI handler is responsible for duplicating and forwarding midi signals from source device

to the destination device in real time. The transposition happens in the MIDI handler by

modifying the midi NOTE ON/OFF message data according to the transpose set in software.

MIDI handler function is operated by using the “callback” feature in mido library. Which is

the function that only acts when the midi message is sent to the port that callback operates on.

When the midi message arrives, it will be copied in for loop, set the channel according to each

loop, set the transpose and then send it out. The functionality of MIDI handler is visualized in

the flowchart below.

Figure 5.2: MIDI handler flowchart

23

Volume control is used to send the midi control (CONTROL/MODE CHANGE) message to

the destination midi devices. The reason we have separate volume control instead of

modifying the velocity data of midi NOTE ON/OFF is the velocity data greatly affects the

sound characteristics, and not every instrument / soundfonts support for dynamic velocity.

The “slider” value is 0-127, which is the minimum / maximum value for midi messages. This

function is called every time the volume-related UI is changed. The slider value will be

modified by master and balance value before sending to the destination midi device.

Figure 5.3: Volume control flowchart

24

5.2 Installation Prerequisites
In order to use our software, users must have, or pass the prerequisite as described below.

1. The computer that runs this software should have a low-latency audio driver. In the

case of Windows OS, it should install the ASIO driver and configure the sound

generation software to use ASIO. Our software can operate without ASIO, but users

may notice the added latency if they use the standard driver.

2. The computer that runs this software MUST have Python 3 installed. As well as Mido

and PyQt 5 library. Which can be installed by using this following command.

● pip install mido

● pip install python-rtmidi

● pip install PyQt5

3. Users MUST have at least 4 MIDI ports (physical or virtual) open and available before

running our application. This is due to the fact that our MIDI handler will open the 2

pairs of ports when it operates.

25

5.3 User Interface and Function breakdown

Figure 5.4: Final design of Musical Instrument Digital Interface, Main window

The volume control of each midi channel in each midi ports pair can be adjusted by using

sound sliders in (5) and (6). By default, every channel is muted at the startup. This design

requires users to increase the volume in each channel by themself to reduce the chance that

the user accidentally sent the sound to the wrong channel.

Currently, the output channel for each port is fixed to channel 2 to 6, but we may allow users

to change the channels in the future. The textbox above the sliders do not represent the sound

type, since our software does not generate the sound. But rather is the note to the user which

they can edit to match the instrument they set in midi destination.

The balance between First source and Second source can be set in (7). When the slider is

placed at the center, both sources output the sound level they set in (5) and (6). But when

moving the slider to the left, the sound volume of Second source will gradually decrease and

reach zero when the slider is placed at the end of left. And vice versa.

26

If the user wants to instantly set the volume to only the first or second channel, or both

channels at the same level. They can do that by pressing the button above the slider as well.

Master Volume (3) is used to adjust the sound for every channel before it sent out to

destination midi device

Transposition (1) is the function that is used to change notes gradually by increase or

decrease with the fixed value. For example, when setting the transpose to 1, it means the C

note will transform into C Sharp. and when set to -1, C will transform into B. The range of

transposition allowed by our software is -11 to +11.

Drum generator (2) is the function that can play Midi file, loop, and set the tempo of that

particular file played. The program will play the intro file followed by the looped base, and it

will play fill-in when the user clicks the fill-in button. The tempo of the drum generator is set

by the slider in (4). If users want to increase or decrease the tempo by half or one fold, they

can easily click the button above the slider.

The Preset system (8) allows the user to save the setting in (3), (5), (6), (7) into the preset.

They can change the setting by just single clicking, which will be useful in the

live-performance. They can save the setting into preset by clicking the Save button. But from

this design, they cannot copy the preset from one to another.

Users can change the pair of midi input and output devices by clicking on the Setting button

(9). Then it will pop up the new window, as shown in Figure 5.3 below.

Figure 5.5: Final design of Musical Instrument Digital Interface, Setting window

27

Dark mode is also available for our software, it can be toggled from the setting. In our use

case, dark mode is not just for the aesthetics, but also affects the functionality of the software.

Dark mode can be especially useful in case the musician uses this software in a dark

environment. For example, night restaurants. Which normal(light) mode will be too bright for

that lighting conditions.

Figure 5.6: Comparison between light mode (left) and dark mode (right).

5.4 Source code
The source code, Qt file, and sample of rhythm MIDI file is hosted on GitHub.

https://github.com/Taechasit1001/AU_SeniorProject_1

28

https://github.com/Taechasit1001/AU_SeniorProject_1

Chapter 6: Conclusion

The purpose of this project was to create a MIDI keyboard using Waveform, Qt design and

Python 3. The method is successfully used. Based on the analysis, it can be conducted that

there are suggestions of what can be in the further stage. First, the design can be improved in

the future to be more creative and friendlier looking. Secondly, as we mentioned in Chapter

5.3 User Interface and Function breakdown. The volume control and each midi channel has

some function that we wish could be fixed in the future. The output channel of each port is

fixed to channel 2 to 6. However, we may improve that by making them flexible for users.

29

References

[1] Peter Waiganjo Wagacha. Instance-Based Learning: k-Nearest Neighbour, 2003

[2] Tom Mitchell. Machine Learning. MIT Press and McGraw-Hill, 1997.

[3] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, UK,

1995. ISBN: 0 19 853864 2.

[4] Tom Gruber <gruber@ksl.stanford.edu>Short answer: An ontology is a specification of a

conceptualization.

[5] Uche Ogbuji is a consultant and co-founder of Fourthought Inc., a consulting firm

specializing in XML solutions for enterprise knowledge management applications. Boulder,

Colorado, USA.

[6] Swift, Andrew. (May 1997), "A brief Introduction to MIDI", SURPRISE, Imperial College

of Science Technology and Medicine.

[7] Milan Digital Audio: Related work (Hauptwerk)

https://www.hauptwerk.com/

[8] Yamaha Corporation.: System Design (Inspired design)

https://th.yamaha.com/th/products/musical_instruments/keyboards/electone/els-02c/index.htm

l

[9] Bernardo Breve, Stefano Cirillo, Domenico DesiatoDepartment of Computer

ScienceUniversity of Salerno84084 Fisciano (SA): An example of MIDI message

https://www.researchgate.net/publication/343709022_Perceiving_space_through_sound_map

ping_human_movements_into_MIDI

[10] Ole Martin Bjørndalen by Read the Docs: Methodology (Mido)

https://mido.readthedocs.io/en/latest/

[11] Techopedia Inc.: Methodology (Qt)

https://www.techopedia.com/definition/13148/qt

[12] The Qt Company Ltd.: Methodology (Qt Designer)

https://doc.qt.io/qt-5/qtdesigner-manual.html

[13] Tracktion Software Corporation: Methodology (Tracktion Waveform)

https://www.tracktion.com/products/waveform-free

30

http://ksl-web.stanford.edu/people/gruber/
https://web.archive.org/web/20120830211425/http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/
https://www.hauptwerk.com/
https://th.yamaha.com/th/products/musical_instruments/keyboards/electone/els-02c/index.html
https://th.yamaha.com/th/products/musical_instruments/keyboards/electone/els-02c/index.html
https://www.researchgate.net/publication/343709022_Perceiving_space_through_sound_mapping_human_movements_into_MIDI
https://www.researchgate.net/publication/343709022_Perceiving_space_through_sound_mapping_human_movements_into_MIDI
https://mido.readthedocs.io/en/latest/
https://www.techopedia.com/definition/13148/qt
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://www.tracktion.com/products/waveform-free

[14] Tobias Erichsen: Methodology (LoopMIDI)

https://www.tobias-erichsen.de/software/loopmidi.html

[15] Fort Wayne: Methodology (MIDI-OX)

https://www.sweetwater.com/sweetcare/articles/how-do-i-install-and-use-midi-ox-for-window

s/

[16] Jamie O'Connell: Methodology (MIDI-OX)

http://www.midiox.com/

31

https://www.tobias-erichsen.de/software/loopmidi.html
https://www.sweetwater.com/sweetcare/articles/how-do-i-install-and-use-midi-ox-for-windows/
https://www.sweetwater.com/sweetcare/articles/how-do-i-install-and-use-midi-ox-for-windows/
http://www.midiox.com/

