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Abstract. Component-Selection is an important task in design synthesis of MBSE. A trade study is 

commonly used to help systems engineers and stakeholders selecting the components of a systems 

design. A simple analysis may be sufficient when it involves only two parameters. However, when 

the components and their integration become more complex, the trade study also becomes harder, 

time- and cost-consuming, and error-prone. This paper aims to propose a method to automatically 

generate the solution by performing an evolutionary search. Sample components of a hybrid car which 

consists of an engine, an electric motor, and a battery are used in our initial prototype. The logical 

architecture is represented in the OMG SysMLTM via CSMTM. Through the experimental result, this 

paper shows that the proposed technique allowed the system design to be efficiently selected. 

Introduction 

In Model-Based Systems Engineering (MBSE), design synthesis is a fundamental engineering 

process that includes the generation of physical architecture specifications that satisfy the logical 

design and desired functional specifications (Kerzhner & Paredis 2009). One of the tasks in design 

synthesis is the component selection. A simple analysis with trade study generally may overcome the 

problem when a few parameters are involved, despite it may be insufficient to solve today’s systems 

engineering problems as the number of components and their integration in the systems are becoming 

more complex, e.g., aircraft systems and passenger car systems. 

In the current practice, the systems engineering process requires activities to establish the main goals 

of a system, specify the system requirements, synthesis a solution space with the possible alternative 

designs, and evaluate the alternatives to find a set of solution from the solution space (Friedenthal, 

Moore & Steiner 2015). Meanwhile, the systems complexity complicates the process to drag out the 

best alternatives from the solution space. Searching through large number of possibilities is often 

time- and cost-consuming (Dinger 1998), and error-prone (Branscomb et al. 2013). Thus, an 

optimization of the searching method is needed to overcome this issue (Dinger 1998). 

Heuristic algorithms, e.g., Genetic Algorithms (GAs) (Goldberg 1989) have been applied successfully 

to many engineering problems, e.g., electromagnetic systems design and aircraft control/ 

aerodynamics (Winter et al. 1996) (Harman & Jones 2001). These potentials facts have triggered 

some scholars to complement GAs and design synthesis together for the success of systems 

engineering (Cagan et al. 2005). In the book Engineering Design Synthesis, (Chakrabarti 2002) 

presents a survey and detailed investigation of the potential applications of Genetic Programming in 

a design synthesis. One of them is to generate a pattern of solution which is represented in the Unified 

Modeling Language by Object Management Group (OMG UMLTM) (Chakrabarti 2002). OMG 
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Systems Modeling Language (SysMLTM is an extension of the OMG UMLTM (Kerzhner & Paredis 

2009) (Vanderperren & Dehaene 2005) which focuses on the perspective of systems engineering. 

This paper proposes a method to perform an automated synthesis to select the components of the 

physical architecture of an MBSE design. The searching and selection method is implemented by 

embedding a GA to the OMG SysMLTM. The GA represents a systems design as a chromosome where 

the genes of each chromosome are the features of the design. The contribution of this preliminary 

investigation is to show how the proposed technique can help systems engineers to automatically 

generate a number of possible designs, and, in addition, assist them using the best fitness solution 

based on the fitness value, which can be pre-defined by human experts of the domain.  

Background 

Overview of Genetic Algorithms and Its Advantage. Genetic Algorithms (GAs) is inspired by 

Charles Darwin’s Theory of Evolution (Hermawanto 2013), which illustrates the natural biological 

systems evolution and its natural selection (Dinger 1998). Computer scientists have adopted this 

approach as a metaheuristic searching algorithm to solve optimization problems (Zou et al. 2015). 

The searching method of GAs is mainly based on randomization with natural selection (Meffert 

2017). Natural selection means that the fittest individual will survive. 

The beginning process of GAs starts with a sample set of potential solutions (initial population) 

(Meffert 2017). It continues when two parent chromosomes in the population mate by sharing their 

genetic information. This mating process (crossover or recombination) produces the offspring by 

having half genes from a parent and another half genes from the other. Meanwhile, gene mutations 

can occur when copying the parent’s genes and cause the genes of the new offspring are slightly 

different from their parent. In the end, the survivor is measured by the fitness of each potential 

offspring (Chakraborty 2010). The definitions of “population”, “phenotype”, “genotype”, 

“chromosomes”, “gene”, and “allele” used in this paper refer to  (Wilhelmstotter 2017) (Meffert 2017) 

(Chakraborty 2010) (Frye 2017). 

There are several advantages of GAs than the traditional searching and optimizing algorithms: (1) 

GAs can be used in a wide range of applications and to perform searching in a complex solutions 

space (Lazko 2006); and (2) GAs are less likely to be led astray by the local optima because they 

take the advantage of an entire set of solutions spread throughout the solution space (Meffert 2017). 

Overview of OMG Systems Modeling Language (OMG SysMLTM) and Its Advantage. A system 

can consist of components wrapped into several modules or sub-systems, which are interconnected 

in order to perform a specific function that is not sufficient to do by the components alone (Austin 

2012). In systems engineering, a system can be defined as “An integrated set of elements, sub-

systems, or assemblies that accomplish a defined objective (hardware, software, firmware), 

processes, people, information, techniques, facilities, services, and other support elements 

(INCOSE)” (Walden et al. (eds.) 2015) (International Council on Systems Engineering (INCOSE) 

2015). 

The entire design of the prototype is represented in the OMG SysMLTM. The reasons are: 

• It supports the design of many different elements thus it reduces the use of many diverse tools 

and representations (Kerzhner & Paredis 2011) (Kerzhner & Paredis 2011). 

• It allows the expression of relationships between different facets of the problem (Kerzhner & 

Paredis 2011) (Kerzhner & Paredis 2011). 

• Designing with the OMG SysMLTM can maximize the reuse of models. It allows designing the 

problem, reusing the existing models, and gathering final architectures without having to rebuild 

them (Albarello, Welcomme & Reyterou 2012). 

• It has its formal semantics that can be understood and interpreted by both human and machine. 

Therefore, it can mitigate misunderstanding between them (Graves & Bijan 2011). With the right 

ontology, the machine can even understand the design context and content as well. 



 

 

Figure 1. Example of Hybrid Car Structure 

Overview of Cameo Systems Modeler. Cameo Systems Modeler (CSMTM) is an OMG standard 

compliant modeling tool for the OMG SysMLTM and UMLTM. CSMTM supports both the OMG 

SysMLTM diagrams and many engineering features such as traceability, impact analysis, and trade 

study to enable MBSE activities. (Friedenthal, Moore & Steiner 2015). There are three main diagrams 

used in the prototype, i.e. Requirement Diagram, Block Definition Diagram (BDD), and Parametric 

Diagram (Cameo Systems Modeler: User Guide 18.1 2015). 

Example of Application: Hybrid Car. This paper proposes a solution for the component-selection 

problem in the instance level of a hybrid car model. Figure 1 shows an example of a hybrid car 

structure in a BDD. Since the main objective of this preliminary research is to show how the proposed 

technique can be applied in a design synthesis problem, only the conceptual level design and a set of 

simplified formulas for calculating the solution with basic parameters, i.e., total horsepower, total 

cost, and total weight are considered. Any complex formula can be used instead of the simplified 

version in the future works, depending on the domains and industries. The basic parameters are used 

to evaluate the fitness value. 

A hybrid car must consist of an engine, an electric motor, and a battery. Each component has its own 

attributes where some of them refer to the specifications of Toyota Prius (Toyota Prius User-Guide: 

2nd Edition for The 2010-2012 Models 2012). The details of each attribute are explained as follows: 

Table 1: Detailed Attributes of Hybrid Car 

Component Attribute Unit Definition 

Engine 

fuel - Fuel type of an engine, i.e., gasoline and diesel 

power hp  hp Power of an engine in horsepower (hp) 

power kilowatt kW Power of an engine in kilowatt (kW) 

speed rpm 
Rotational speed of an engine in revolutions per 

minute 

weight kilogram Mass of an engine 

price US$ Price of an engine 

Electric 

Motor 

power hp hp Power of an electric motor in horsepower (hp) 

power kilowatt kW Power of an electric motor in kilowatt (kW) 

speed rpm 
Rotational speed of an electric motor in revolutions 

per minute 

weight kilogram Mass of an electric motor 

price US$ Price of an electric motor 

Battery 

type - Cell type of a battery, i.e., NiMH and Li-Ion 

energy W/kg Energy of a battery pack in watt per kilogram 

weight kilogram Mass of a battery 

price US$ Price of a battery 



 

Literature Review 

The Failures of Design Synthesis. The main objective to use the OMG SysMLTM is to define the 

system specifications. Since the safety-critical systems like those of a passenger car and an airplane 

are very complex, they all require a well-defined specification before the design and development 

(Spyropoulos & Baras 2013). Meanwhile, industries still need to make a decision faster without much 

modeling effort (Trcka et al. 2011). Due to this time constraint and large solution space, systems 

engineers are forced to only focus on a limited set of design alternatives (Albarello, Welcomme & 

Reyterou 2012) to keep their products competing in the business market. 

Component-Selection for Physical Architecture in Design Synthesis. Component-selection is a 

process of design synthesis to select a set of feasible components from a component library (catalog), 

which satisfies the requirements of the logical architecture. Today, the complexity of systems is 

increasing dramatically compared to a decade ago. It is accompanied by the increasing of components 

number and the difficulties of components dependency (Spyropoulos & Baras 2013). The two 

emerged problems caused by this issue (Nassar & Austin 2013): (1) The problem to perform an 

extensive searching to discover the component combination(s) through many possibilities; and (2) 

The problem when there is no feasible combination exists that can satisfy the requirements. 

This paper focuses mainly to solve the first problem by designing a decision support system to assist 

the systems engineers and stakeholders performing the component-selection process with less efforts 

and resources. A random-based searching is used to find the best alternative solution among many 

design alternatives generated automatically by the system (Albarello, Welcomme & Reyterou 2012). 

Some related studies have been conducted by (Nassar & Austin 2013) (Leserf et al. 2015). As 

illustrated in (Nassar & Austin 2013) (Nassar 2012), the design alternatives are assembled from a 

components library and evaluated by using a trade study analysis. The system level architecture is 

assumed to be fixed. The difference to the previous studies is this study is attempting to show the 

usability of a GA in the OMG SysMLTM to perform the trade study analysis. 

Traditional Trade-off vs. Evolutionary Trade-off. Trade-off is an essential part in a MBSE design 

synthesis (Spyropoulos & Baras 2013). It means “the decision-making actions that select from 

various requirements and alternative solutions on the basis of net benefit to the stakeholders” 

(International Council on Systems Engineering (INCOSE) 2015). Trade study analysis or trade-off 

study can help in selecting the fittest configuration to the specified criteria among many possible 

solutions (No Magic Documentation 2017). In this study, trade study is based upon a systematic 

comparison of the feasible hybrid car’s designs measured with respect to performance, cost, and 

weight. The trade-off study is made among the different possible physical architectures relative to the 

requirements and the logical architecture (Ackva 2013). Compared to the traditional practice, a trade-

off is commonly done by simply performing an extensive evaluation to all potential solutions. 

However, a complex system comprises almost infinite number of traits and a trade-off requires 

multiple traits in analysis (Evolution News 2014). 

Genetic Algorithms in Design Synthesis 

Genetic Algorithms in Design Synthesis. The detailed process of GAs in design synthesis illustrated 

in Figure 2 is as follows (Hermawanto 2013): 

1. Determine the number of genes within a chromosome, the size of the population, the number of 

evolutions, and the values of mutation and the crossover rate. The size of the population can vary 

according to the complexity of the problem to be addressed (Zou et al. 2015). 

2. Encode the library of component catalogs to the represented genes to form the chromosomes. 

Then generate the initial population randomly. 

3. Evaluate the fitness value of the chromosomes by calculating the objective function.  

4. Select the best chromosomes to become the parent for the next generation. 

5. Perform the crossover and mutation operation with the specified rates to produce new offspring. 

6. Repeat steps 3 to 5 until the maximum number of evolutions is reached. 



 

7. Select the best chromosome from the last generation. 

8. Decode the chromosome to the solution, in this case, is a hybrid car with an engine, an electric 

motor, and a battery. 

9. The hybrid car can be used to support the decision making. 

10. Optimize the GA, if it is needed by specifying a new configuration. 

 

Figure 2. Genetic Algorithm in Design Synthesis 

According to the design, the model requirement parameters and the MOE are used to identify the best 

optimized value or the Fitness Value. Figure 3 shows that the evolutionary trade-off also needs a 

model of fitness function to perform the natural selection of GAs. Figure 3 depicts the additional 

model for a HybridCar and its components. The GA parameters provide the code and the gene value 

for each Battery, Engine, and Electric Motor required by the GA to do the evaluation. The Trade 

Study Analysis block uses the Fitness Function to analyze the solution. The Fitness Function block 

represents the model of formula of fitness value and also includes the parameters required by the GA. 

 

Figure 3. Trade Study Structure model with GA’s parameter and Fitness Function 



 

This paper presents seven key steps in designing GAs such as the representation and encoding 

technique; initial population (how the first generation is generated); selection method (how to select 

parent individuals to be involved in reproduction); crossover operator (how to produce an offspring 

from two parent chromosomes); mutation operator (how to mutate an offspring); (Zou et al. 2015) 

and training and guidance (how to optimize the GA). 

1. Representation and Encoding 

The representation specifies the range of candidate solutions that can be generated (Cagan et al. 2005). 

Before the use of a GA, encoding the potential solutions to variables called chromosomes (Dinger 

1998) is necessary to let computers understand the process (Chakraborty 2010). In the initial 

prototype, value encoding is performed in which each chromosome is a sequence of some values, 

e.g., Chromosome A [ABDJEIFJDHDIERJFDLDFLFEGT] (Chakraborty 2010) (Obitko 1998). 

Value encoding is used because: (1) The type of problem is difficult to solve with binary encoding 

(Chakraborty 2010). In value encoding, the values can be anything related to the specific problem, 

e.g., real number (Chakraborty 2010) or alphabetical characters (Obitko 1998). Thus, it is easier to 

encode and decode the gene of a solution, such as A → Engine A, B → Engine B; (2) Permutation 

encoding is mainly used to solve ordering problems, e.g., traveling salesman problem (Chakraborty 

2010); and (3) Tree encoding is mainly used for evolving programs or expressions (Chakraborty 

2010). Table 2, Table 3, and Table 4 below show the examples of the catalogs of a component library. 

Each catalog contains a unique code, an encoded genetic code, and other specifications for each 

engine, electric motor, and battery respectively. The component library involves 20 alternative 

components: 10 engines (A-J), 5 electric motors (A-E), and 5 batteries (A-E). As illustrated in the 

tables, a row represents a hybrid car instance. The maximum number of potential solutions from its 

permutation equals to 250 possibilities. 

Table 2: Example of Engine Catalog 

 

Table 3: Example of Electric Motor Catalog 

 

Table 4: Example of Battery Catalog 

 

2. Initial Population 

In the initial prototype, the initial population is randomly generated by a random number generator 

to simulate the nature of evolutions (Cagan et al. 2005). Potential designs from previous experience 

might be used as the initial population. The number of chromosomes in the initial population depends 

on the population size which is specified by the systems engineers. 



 

3. Fitness Evaluation 

The analogy comes from Darwin’s theory of evolution “The strongest species that survives” 

(Hermawanto 2013). To this end, a fitness value is needed to define the quality of each gene in a 

population to perform a selection process (Chakraborty 2010) (Dinger 1998). The purpose is to 

evaluate how close an individual is to an optimal solution (Zou et al. 2015). Table 5 shows the 

example of a stakeholder needs. It defines the requirements of potential solutions pre-defined by the 

stakeholders. Suppose that they wish to build a hybrid car that satisfies a level of performance, a 

limited budget, and a weight constraint. 

Table 5: Example of Stakeholder Needs Table 

 

Figure 1 shows the engine, electric motor, and battery of the hybrid car. In this process, the systems 

engineers have to find a solution based on the defined parameters, such as MOE (Sayanjali & Nabdel 

2013). Figure 4 shows the requirements (Target HP, Maximum Cost and Maximum Weight) (Roedler 

& Jones 2005) are satisfied by the MOE: totalHP, totalCost, and totalWeight respectively. The 

development of the requirements starts with a statement of stakeholder needs and evolves into two 

levels of requirements: 

1. The 1st level requirements are the initial requirements, e.g.: 

• SN1: The greatest performance in term of HP, closest to the target HP. 

• SN2: The cheapest cost to build a car, much cheaper than the target cost. 

• SN3: The lightest car, much lighter than the target weight. 

2. The 2nd level requirements are the detailed requirements derived from the initial 

requirements. They represent the component-level requirements and cast as the constraints 

written in terms of the values of the component attributes (Nassar & Austin 2013), e.g.: 

• SR1: Target horsepower close to 140 hp. 

• SR2: The maximum cost is 30,000 US$. 

• SR3: The weight shall not be more than 70 kilograms. 

 

Figure 4. Requirement Diagram depicts the derive and satisfy relationship for System Requirement 

Table 6 shows the example of the user requirements and the design parameters considered in the 

trade-off study: Performance, Cost, and Weight. The weighted ratio is used to define the weighted 

fitness function to evaluate the chromosomes. 

Table 6: Example of User Requirements 

Requirements Value Weighted Ratio 

Target HP 140 hp 0.7 

Maximum Cost US$ 30,000 0.2 

Maximum Weight 700 kilograms 0.1 



 

Before measuring the fitness value, it is necessary to calculate the gained horsepower (hp), cost, and 

weight of the potential solution in the selection process. Here are the examples of a hybrid car’s 

performance calculations: 
𝑡𝑜𝑡𝑎𝑙𝐻𝑃 = ℎ𝑝𝐸𝑛𝑔𝑖𝑛𝑒 + ℎ𝑝𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑀𝑜𝑡𝑜𝑟  

𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑒𝑛𝑔𝑖𝑛𝑒𝑃𝑟𝑖𝑐𝑒 + 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑀𝑜𝑡𝑜𝑟𝑃𝑟𝑖𝑐𝑒 + 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑃𝑟𝑖𝑐𝑒  
𝑡𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑒𝑛𝑔𝑖𝑛𝑒𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑀𝑜𝑡𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑊𝑒𝑖𝑔ℎ𝑡 

Whereas: 

• totalHP is the total power of a solution in horsepower. The example formula for the initial 

prototype is copied from the example of trade study pattern with Cameo Simulation Toolkit (No 

Magic Documentation 2017). In the example, the total power of a HybridEngine is the sum of the 

power of the electricMotor and the dieselGenerator); 

• totalCost is the total cost of a solution; 

• totalWeight is the total mass of a solution. 

In this paper, a weighted fitness function is used to evaluate the solutions. A similar research by 

(Grosso et al. 2007) applied a combination of GAs, linear programming, evolutionary testing, and 

static & dynamic information using a weighted fitness function to identify tests that expose buffer 

overflows in programming code (Avancini 2012). The example of weighted GA’s fitness function is 

as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤1 · fitnessHP + w2 · fitnessCost + w3 · fitnessWeight  

Whereas:  

• fitnessHP is the fitness value of the performance of a solution in horsepower; 

• fitnessCost is the fitness value of the cost of a solution; 

• fitnessWeight is the fitness value of the mass of a solution; 

• w1, w2, and w3 are real, positive weights, indicating the contribution of each fitness value to the 

overall fitness function whereas w1 + w2 + w3 = 1 (See Table 6). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐻𝑃 =  𝑀𝐴𝑋𝐵𝑂𝑈𝑁𝐷 −
|𝑡𝑎𝑟𝑔𝑒𝑡𝐻𝑃 − 𝑡𝑜𝑡𝑎𝑙𝐻𝑃|

𝑡𝑎𝑟𝑔𝑒𝑡𝐻𝑃
 

If (𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 ≤ 𝑚𝑎𝑥𝐶𝑜𝑠𝑡) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐶𝑜𝑠𝑡 =
|𝑚𝑎𝑥𝐶𝑜𝑠𝑡−𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡|

𝑚𝑎𝑥𝐶𝑜𝑠𝑡
 

Else    𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐶𝑜𝑠𝑡 =  𝑀𝐼𝑁𝐵𝑂𝑈𝑁𝐷  

If (𝑡𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 ≤ 𝑚𝑎𝑥𝑊𝑒𝑖𝑔ℎ𝑡) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡 =  
|𝑚𝑎𝑥𝑊𝑒𝑖𝑔ℎ𝑡−𝑡𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡|

𝑚𝑎𝑥𝑊𝑒𝑖𝑔ℎ𝑡
 

Else    𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡 =  𝑀𝐼𝑁𝐵𝑂𝑈𝑁𝐷  

Whereas: 

• MINBOUND is the lowest bound of fitness value, 0.00; 

• MAXBOUND is the highest bound of fitness value, 1.00; 

• targetHP is the target performance of a solution in horsepower; 

• maxCost is the maximum cost of a solution; 

• maxWeight is the maximum mass of a solution. 

 

Figure 5. Example of Trade Study Analysis with Parametric diagram 



 

The fitness function and all related equations for the GA can be represented in the OMG SysMLTM 

model using constraint block. A constraint block is a specific kind of block, which a model 

practitioner creates as the reuse of a mathematical expression. It consists of two major properties, 

constraint property and constraint parameter. A constraint property is a mathematical expression 

reused in the system model, and constraint parameters are the variable definition usage in the 

expression. The definitions of mathematical expressions are defined in the BDD with the constraints 

block. To illustrate how those constraint blocks are used, the OMG SysMLTM provides a Parametric 

Diagram (See Figure 5). A Parametric Diagram is an interconnection diagram that binds the values 

between the properties inside a Block. Normally a model practitioner uses a Parametric Diagram to 

bind the values between the Block properties and the constraint parameters to evaluate value analysis 

for the model. Figure 5 shows an example of how the variables of the fitness function and the related 

equations are bound to the other value properties or parameters. 

4. Selection 

Selection is also known as reproduction (Chakraborty 2010). It is applied to a population to find the 

best chromosomes to be the parents (Obitko 1998). From the population, the parent chromosomes are 

chosen to perform crossover and produce the potential offspring (Chakraborty 2010). In the initial 

prototype, the selection process is performed using the best chromosome selection, also known as 

elitism. Elitism is a selection method that copies the best chromosome of the previous population to 

the new one (Obitko 1998). In addition, the current fittest chromosome is always kept in the 

population (Eiben & Smith 2003). Elitism was introduced because the chance of losing the best 

chromosome is high when producing a new population by performing crossover and mutation (Obitko 

1998). The default configuration of the initial prototype is an elitist ranking selector that copies the 

top 90% (0.90) of the specified population size (Hall 2017). 

5. Crossover and Crossover Rate 

Crossover is also known as recombination (Chakraborty 2010). It is like simulating the “biological 

mating” of two parent chromosomes by swapping and mixing their genes (Meffert 2017) to pass their 

genetic information to their offspring (Frey, Fittkau & Hasselbr 2013). The default configuration of 

the initial prototype is a one-point crossover (Getrost 2006). The one-point crossover locates a 

crossover point and then clones the whole things behind this point from the first parent chromosome 

and then the rest after the crossover point from the second parent chromosomes (Chakraborty 2010) 

(Obitko 1998). The crossover point is chosen randomly with a probability rate of 0.35 of the specified 

population size (Hall 2017). 

6. Mutation and Mutation Rate 

Mutation is the random changes of the gene values in the chromosomes of a potential solution 

(Meffert 2017). The changes are mainly caused by errors in copying genes from the parent 

chromosomes (Obitko 1998). Once crossover helps the parent chromosomes produce their successors, 

the mutation is applied to each successor. By applying mutation, it can help retain the diversity of the 

individuals in the whole population (Frey, Fittkau & Hasselbr 2013) (Chakraborty 2010) (Meffert 

2017). The default configuration of the initial prototype is a custom mutation for the string-typed 

gene at a rate of 12. It means that the mutation is applied to 1 in 12 genes in the whole population. It 

is often necessary to develop a custom type of mutation in value encoding (Chakraborty 2010). The 

mutation is simply done by performing a change at the random point with another permitted string 

value. The rate is dictated by the size of the chromosome multiplied by the size of the population 

divided by the rate (Hall 2017). The probability of mutation rate is 1/12.  

7. Training for Optimization 

The final task in the process of a design synthesis is to provide feedback to the system and to discover 

an approach to produce better solutions. In the initial prototype, the GAis trained by reconfiguring its 

parameters, e.g., the value of population size, evolutions number, selection rate, crossover rate, and 

mutation rate. 



 

GAs Plugin in Cameo Systems Modeler (CSMTM) using MagicDrawTM Open API. A GA plugin 

is integrated with CSMTM via MagicDrawTM Open API. The integration of OMG SysMLTM with a 

trade-off tool will allow the systems engineers to make decisions faster with more confidence 

(Spyropoulos & Baras 2013). Figure 6 depicts the overview design of the GA for the OMG SysMLTM 

plugin. The GA Plugin reads the OMG SysMLTM structured models from MagicDrawTM or CSMTM 

along with the required configurations i.e., the fitness value, population, or MOEs, and returns the 

result as an optimization design for the Evolutionary Trade-off System. 

 

Figure 6. Genetic Algorithms for Design Support System of System Modeling 

Results of Evaluation 

Figure 7 shows the processes of an evolution of the GA. The parameters used in this experiment are: 

Population Size = 10; Number of Evolution = 20; Crossover Rate = 0.35; Mutation Rate = 12; and 

Selection Rate is 90 percent with Elitism selector. The advantage of Elitism selector is to keep the 

best alternative from the previous solution as a potential alternative for the next one. As seen in the 

figure, starting from the 7th generation, the best alternative is constantly hold by ADC. 

 

Figure 7. Evolutionary Process 

The trade study found that the best solution can be determined using the logical design and specified 

user requirements. The best hybrid car based on the desired requirements (i.e., target power = 140 hp; 

maximum cost = US$ 30,000; and maximum weight = 700 kg) consists of Engine A, Electric Motor 

D, and Battery C with gained power = 138 hp; cost = US$ 15,400; and weight = 594 kg. The fitness 

value of the solution is about 0.802 out of 1.0. 



 

Conclusion and Future Work 

This paper demonstrated the use of GAs to perform an evolutionary trade-off in the design synthesis 

of the MBSE. The application presented here is to assist in the component selection process to 

assemble a hybrid car that consists of an engine, an electric motor, and a battery. A fitness evaluation 

was applied to the population to perform an Elitism selection method. The tentative conclusion was 

the best physical architecture level that included Engine A, Electric Motor D, and Battery C. 

A single synthesis method cannot always solve every kind of problem (Cagan et al. 2005). Therefore, 

there are many possible future works to improve this study: 

• Some selection methods can be evaluated to find the most suitable selector to assist the systems 

engineers to find a better solution (Chudasama, Shah & Panchal 2011) (Mashohor, Evans & 

Arslan 2005) (Moh & Geraghty 2011). Beside Elitism, the other selectors are roulette-wheel, 

Boltzmann, tournament, rank, and steady-state (Chakraborty 2010).  

• In a bigger scale of industry, GAs alone may insufficient for a complex system with more 

parameters. GAs can be integrated with some algorithms, such as Pareto-Optimal (Nassar & 

Austin 2013) or Niche-Pareto (Horn, Nafpliotis & Go 1994). 

• Blind-extensive experiments to a GA can waste time and resources. It can use a self-tuning to 

help the adaption with a different component library, structures, and attributes (Sugihara 1997). 

• GAs work best when components are relatively independent of each other. Therefore, when there 

are strong constraints, such as Component A only works in some ranges of parameters of 

Component B, then a simple crossover can often result in infeasible solutions because component 

A and B are incompatible. However, there should be a pool of available components. Thus, the 

use of Bill of Material (BOM) and vendor list is necessary here. To solve this issue, there are some 

options that could be done as the future works: 

▪ Develop an efficient encoding and decoding mechanism to deal with relationship between 

each component. 

▪ Use Ripple Down Rules to manage the requirements incrementally using rule-based 

representation. 

▪ Include the completed Block Definition Diagrams and Internal Block Diagrams elements 

to ensure the compatibility between components (logical grouping) via the interfaces, 

connector, block, data type, and item flow. 

▪ Include Product Line Engineering perspective might solve the of component availability 

issue, for example applying 150% architecture model to help the components selection 

and suggest the different product variances based on the model by including the overall 

common components, alternative components, and optional components. By doing so, the 

systems engineers can get the advantage of GA, which is to find a number of alternative 

sets of solutions. Moreover, a company might consider to create a new component 

(Walden et al. (eds.) 2015) with superior performance and/or custom functionality (Nassar 

& Austin 2013). 

• The fitness function is a challenging issue. A fitness function should cover only a set of 

requirements, depending on the context of tested system. To accomodate the different dimension 

of importance from each stakeholder to a fitness function, the understanding of underlying 

reasons, opinions, and motivations of each stakeholder’s requirements is really needed. The 

upcoming SysML 2.0 has been extended to cover the stakeholders as an element. This concern 

could be linked to SysML 2.0 as a future work. 

• This paper focuses only on the physical layer. However, future works can also help to optimize 

the logical architecture (Lukasiewycz et al. 2011), e.g., optimizing the logical components in 

Package Diagrams, Block Definition Diagrams, and Internal Block Diagrams. 

• Some of other applications are optimizing the control strategy to reduce the fuel consumption 

and emissions without reducing the overall performance of a system (Montazeri-Gh, Poursamad 

& Ghali 2006) (Huang, Wang & Xu 2006) (Montazeri-GH & Poursamad 2005) (Fang et al. 2011) 



 

(Wan, Canedo & Abdullah 2015). Regarding to this, an automated user scenario generation 

with Case-Based Reasoning (Gozali 2002) (Daengdej & Lukose 2005) (Daengdej, Lukose & 

Murison 1999) (Daengdej et al. 1996) can be performed in many different driving cycles. 
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