
BANKER’S ALGORITHM
BY

THANAPOL SOPANHARI 6113632

DATA STRUCTURES

• Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

• Available :

• It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

• Available[j] = k means there are ‘k’ instances of resource type Rj

• Max :

• It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a system.

• Max[i, j] = k means process Pi may request at most ‘k’ instances of resource type Rj.

DATA STRUCTURES

• Allocation :

• It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently allocated to
each process.

• Allocation[i, j] = k means process Pi is currently allocated ‘k’ instances of resource type Rj

• Need :

• It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.

• Need [i, j] = k means process Pi currently need ‘k’ instances of resource type Rj

• for its execution.

• Need [i, j] = Max [i, j] – Allocation [i, j]

SAFETY
ALGORITHM

• 1) Let Work and Finish be vectors of length ‘m’ and ‘n’
respectively.
Initialize: Work = Available
Finish[i] = false; for i=1, 2, 3, 4….n

• 2) Find an i such that both
a) Finish[i] = false
b) Needi <= Work
if no i exists go to step (4)

• 3) Work = Work + Allocation[i]
Finish[i] = true
goto step (2)

• 4) if Finish [i] = true for all i
then the system is in a safe state

PROGRAM IMPLEMENTATION

First step is to put your resource and process sizes.

THERE ARE 2 MODES

Manual
mode

Random
mode

MANUAL MODE
PRESS M TO SELECT THE MANUAL MODE

EXAMPLE

RAMDOM MODE
PRESS ANY KEYS TO SELECT THE MANUAL MODE

SAFE ALGORITHM

RANDOM INOUT

RANDOM INPUT

THANK YOU

