
Fundamentals of Python
(Reference: Fundamentals of Python, K.A

Lambert and B.L Juneja)

1 Asst. Prof. Dr. Anilkumar K.G

Introduction

• Python is an interpreted language, and you can run simple python
expressions and statement in an interactive programming
environment, called the Shell.

• Whether you are running Python code as a script or interactively in a
shell, the Python interpreter does a great deal of work to carry out
the instructions in your program.

• The interpreter reads Python expression or statement called the
source code and verifies that it is well formed.

• In this step, the interpreter behaves like a strict English language
teacher.

2 Asst. Prof. Dr. Anilkumar K.G

Introduction(cont.)

• As soon as the interpreter encounters such an error, it halts
translation with an error message.

• If the python expression is well formed, the interpreter then
translates it to an equivalent form in a lower-level language called
byte code.

• This byte code is next sent to another software component, called the
Python Virtual Machine (PVM) where it is executed.

• If another error occurs during this step, the execution also halts with
an error message.

3 Asst. Prof. Dr. Anilkumar K.G

Introduction(cont.)

• Algorithm: An algorithm is a sequence of instructions for solving a
problem.

• Python scripts: Python scripts are programs that are saved in files and
run from a terminal command prompt.

• Syntax: Syntax is the set of rules for forming correct expressions and
statements in a programming language.

4 Asst. Prof. Dr. Anilkumar K.G

print function

• Syntax of the print function:
 print(<expression1>, <expression2>,……., <expressionn>)

• print(<expression>, end=“ “) would prevent new line of the print

function

5 Asst. Prof. Dr. Anilkumar K.G

input function
 Syntax
 <variable identifier> = input(<a string prompt>)
• How does the input function know what to use as the prompt?
• The text/string prompt is an argument for the input function that tells

it what to use for the prompt.
• The input function always builds a string from the user’s keystrokes

and returns it to the program.

6 Asst. Prof. Dr. Anilkumar K.G

Data Types and Expressions
• In programming, a data type consists of a set of values and a set of

operations that can be performed on those values.
• A literal is the way a value of a data type looks to a programmer.
• String literals ‘’ and “ “ are empty string and “\n” is a new line

character
 Type of Data Type name Literals

Integers int -1, 0, 1, 2,…..

Real numbers float -0.55, 0.333, …

Character strings str “Hi”, “ “, ‘A’, ‘66’, ‘5’,….

7 Asst. Prof. Dr. Anilkumar K.G

Type Conversion
• In Python there are two type conversion functions, called int (for

integers), and float(for floating point numbers)
Function What it does
float(<a string of digits>) Converts a string of digits to a

floating point number
int (<a string of digits>) Converts a string of digits to an

integer value
input (<a string>) Displays the string prompt and waits

for a keyboard input. Returns the
input string to the user

Print(<exp1>, <exp2>,…<expn>) Evaluate the expressions and displays
them and the comma will
concatenate the strings.

<string1> + <string2> Glues the two strings together and
returns the result. 8 Asst. Prof. Dr. Anilkumar K.G

round function

• The round() function rounds a float to the nearest int value.

int1 = float(input("Enter first float: "))
int2 = float(input("Enter second float: "))
sum = int1 + int2
print("The sum of numbers without round is ", sum)
print("The sum of numbers with round is ", round(sum))

Enter first float: 8.5677
Enter second float: 1.234
The sum of numbers is 10

9 Asst. Prof. Dr. Anilkumar K.G

Variable

• A variable associates a name with a value
• Syntax
 <variable_name> = <expression>
Example:
 sum = 20
 name = “Anil”
•Where sum and name are variables, and 20 and “Anil” are expressions

10 Asst. Prof. Dr. Anilkumar K.G

Exercise

• Write a line of code that prompts the user for his/her name and saves
the user’s input in a variable called name.

• Get two floating point numbers from keyboard and print their sum.

11 Asst. Prof. Dr. Anilkumar K.G

Escape sequence

\b is the backspace
\n is the newline
\t is the horizontal tab
\\ is the \ character
\’ is the single quotation
\” is the double quotation

12 Asst. Prof. Dr. Anilkumar K.G

String Concatenation

• Use concatenation operator +
 Print(“Hello” + “How are you?”)

13 Asst. Prof. Dr. Anilkumar K.G

* operator

• In python, the * operator allows you to build a string by repeating
another string a given number of times.

• For example, if you want the string “python” to be proceeded by 30
spaces;

 print(" " * + 30 "Python")
This will print “Python” after 30 space characters

14 Asst. Prof. Dr. Anilkumar K.G

ord and chr function

• Python’s ord and chr functions convert charters to their numeric
ASCII codes and back again respectively.

• Example of ord function:
 val = ‘a’
 print(ord(val)) #convert a character into its ASCII code
 OUTPUT is 97
• Example of chr function:
 val = 97
 Print(chr(val)) #converts ASCII code into character

15 Asst. Prof. Dr. Anilkumar K.G

Expressions Operator Meaning Syntax

− Negation −a

** Exponentiation a ** b
* Multiplication a * b
/ Division a / b
// Quotient a // b
% Remainder/Modulus a % b

+ Addition a + b
- Subtraction a - b

16 Asst. Prof. Dr. Anilkumar K.G

Precedence Rule

• Exponentiation has the highest precedence.
• Negation is evaluated next.
• Multiplication, division, remainder are evaluated before

addition and subtraction
• Addition and subtraction are evaluated before assignment.

17 Asst. Prof. Dr. Anilkumar K.G

Precedence Rule

• Precedence rule – Example:
1. 5 + 3 * 2 = 5 + 6 = 11
2. (5 + 3) * 2 = 8 * 2 = 16
3. 6 % 2 = 0
4. 2 * 3 ** 2 = 2 * 9 = 18
5. 3 ** 2 = 32 = 9
6. 2 ** 3 ** 2 = 2 ** 9 = 29 = 512
7. (2 ** 3) ** 2 = 23 ** 2 = 82 = 64
8. 45 / 2 = 22.5 (returns a float result)
9. 45 // 2 = 22 (returns an integer result)
10. 45 / 0 = error

18 Asst. Prof. Dr. Anilkumar K.G

Type Conversion

No. Type(<expression>) Example

1 int(<a floating point number>) int(3.77) = 3

2 int(<string>) Int(“33”) = 33

3 float(<an integer number>) float(22) = 22.0

4 float(<string>) float(“22”) = 22

5 Str(<any value>) Str(99) = “99”

19 Asst. Prof. Dr. Anilkumar K.G

Augmented Assignment

• The assignment symbol can be combined with the arithmetic and
concatenation operators to provide augmented assignment operations.

• Syntax: <variable><operator>= <expression>

20

No. Augmented Assignment Meaning

1 a += 3 a = a + 3

2 a -= 3 a = a - 3

3 a *= 3 a = a * 3

4 a /= 3 a = a / 3

5 a %= 3 a = a % 3

6 a += “Hello” a = a + “Hello”
Asst. Prof. Dr. Anilkumar K.G

The math Module

• The math module includes several functions that perform basic
mathematical operations.

• To use a resource from a module, you write the name of a module as
a qualifier, followed by dot (‘.’) and the name of the resource.

• Example:
 import math
 print(math.pi) # 3.14563777288942
 print(math.pow(8,2)) #64.0
 print(math.pow(5,4)) #625.0

21 Asst. Prof. Dr. Anilkumar K.G

Get Help for a math Function
• The following example shows how to get help for a cosine function:
 print(help(math.cos))
• If you are going to use only a couple of module’s resources frequently, you

can avoid the use of the qualifier with each reference by importing the
individual resources as follows:

 from math import pi, sqrt
 print(pi, sqrt(2))
• This way you can avoid the usage of the “math.” before any math function.
 from math import*
• would import all of the math module’s resources

22 Asst. Prof. Dr. Anilkumar K.G

Printing math values in defined precisions
• For example, check the result of pi from the math module:
 import math
 print(math.pi)
output: 3.141592653589793
• The following syntax is implemented to print the pi value in a defined
precision and space:
 “%<field width>.<precision>f” % float variable/value
• For example, print the two decimal point value of pi by:
 print(“pi is %0.2f” % math.pi) Output: pi is 3.14

23 Asst. Prof. Dr. Anilkumar K.G

Income Tax Calculator

• The customer requests a program that computes a person’s income tax.
• Let us assume the following tax laws:

1. All taxpayers are charged a flat tax rate of 20%.
2. All taxpayers are allowed a 10,000$ standard deduction.
3. For each dependent, a taxpayer is allowed an additional 3,000$ deduction.
4. Gross income must be entered.
5. The income tax is expressed as a decimal number.

• Formule:
 Taxable_income = Gross income – 10,000 – (3,000 * no. of dependents)
 Income_tax = Taxable_income * tax_rate

24 Asst. Prof. Dr. Anilkumar K.G

TAX_TATE = 0.20 # 20%
STANDARD_DEDUCTION = 10000.0
DEPENDENT_DEDUCTION = 3000.0

#Request the gross income

grossIncome = float(input(" Enter the gross income <minimum
10,000>:"))

numDependents = int(input(" Enter the number of dependents: "))
#Compute the inmcome tax
taxableIncome = grossIncome - STANDARD_DEDUCTION - \
(DEPENDENT_DEDUCTION * numDependents)

incomeTax = taxableIncome * TAX_TATE
print("The income tax is $" + str(incomeTax))

Output:
Enter the gross income <minimum 10,000>: 20000
 Enter the number of dependents: 2
The income tax is $800.0

25 Asst. Prof. Dr. Anilkumar K.G

Practice Questions
• Write a program that takes the radius of a sphere as input and outputs

the following:
 - sphere’s diameter
 - circumference
 -surface area
 - volume
• Write a program that calculates and prints the number of minutes in a

year.
• Light travels at 3 x 108 meters per second. A light year is the distance a

light beam travels in one year. Write a program that calculates and
displays the value of a light year.

26 Asst. Prof. Dr. Anilkumar K.G

Control Statements - Loops

• Iteration: Each repetition of the action is known as a pass or iteration.
• Loops: A Loop is a programming structure for iteration.
• There are two types of loops:

1. Those that repeat an action a predefined number of times, called definite
loops (or definite iteration).

2. Those that perform the action until the program determines that it needs to
stop, called indefinite loops (or indefinite iteration).

27 Asst. Prof. Dr. Anilkumar K.G

The for Loop
• Syntax of the for loop:
 for <variable> in range (<an integer expression>):
 <loop body statements>
• Note that the statements in the loop body must be indented and

aligned in the same column.
• Exampe1: Print “Hello” 5 times with the for loop
for x in range (5): #prints “Hello” 5 times with a newline
 print("Hello")

for x in range (5): #prints “Hello” 5 times without a newline
 print("Hello", end=" ")

28 Asst. Prof. Dr. Anilkumar K.G

The for Loop (cont.)

• Exampe2: Print 0-5 with the for loop
 for count in range (5): #prints each digit with a newline
 print("count = ", count, "and", range(5))

• Output of the above for loop program is shown below:

• What did you understand from this Output?

29

count = 0 and range(0, 5)
count = 1 and range(0, 5)
count = 2 and range(0, 5)
count = 3 and range(0, 5)
count = 4 and range(0, 5)

Asst. Prof. Dr. Anilkumar K.G

The for Loop (cont.)

• It means that, the range function has two arguments, the first arguments
is zero, and the latter one is an integer (a non zero value).

• Hence we can re-write the for loop program as below:
for count in range (0,5): #prints from 0 to 4 (5-1) in a newline
 print("count = ", count)
• The output of the above for loop program can be given as:

30

count = 0
count = 1
count = 2
count = 3
count = 4

Asst. Prof. Dr. Anilkumar K.G

for loop with Two Variables in range Function

• When two arguments are supplied to range function of the for loop, the
count ranges from the first argument to the second argument minus 1.

• Syntax for <variable> in range (<lower bound>, <upper bound>):
 <loop body>
• Example1:
for count in range (1,5): # prints from 1 to 4 (5-1) with newline
 print(count)

31

count = 1
count = 2
count = 3
count = 4

Asst. Prof. Dr. Anilkumar K.G

for loop with Two Variables in range Function

• Example2: Get the lower and upper values and shows the sum of values
from lower to upper.

lower = int(input(" Enter the lower bound: "))

upper = int(input(" Enter the upper bound: "))

sum = 0

for count in range (lower, upper + 1):

 print(count)

 sum += count

print(" The sum from ", lower, "to", upper, "is", sum)

32 Asst. Prof. Dr. Anilkumar K.G

Class Exercises

• Write a program that can find the factorial of a positive integer
number.

• Get a string from user and display its characters ASCII values.

33 Asst. Prof. Dr. Anilkumar K.G

Analyzing the range function using the list
function

• The list function can be used to analyze the meaning of the range function in a
for loop by converting its elements as a list, [].

for count in range (5): # prints digits from 0 to 4 (5-1) with newline
 print(count)

• The range(5)can be analyzed with the list function as shown below:
 print(list(range(5))) # would output: [0, 1, 2, 3, 4] => a list

 print(list(range(1,5))) # would output: [1, 2, 3, 4] => a list
• It means that the range(<expression>)of a for loop is just a list of

elements, and it can be represented as [1,2,3,……,n].

34 Asst. Prof. Dr. Anilkumar K.G

Analyzing the range function using the list
function

• Consider the following for loop program:
for number in range(1,6):
 print(“number = “, number)

• The range (1,6) is equivalent to [1,2,3,4,5]as shown
below:

for number in [1, 2, 3, 4, 5]:
 print(“number =“, number)

35

number = 1
number = 2
number = 3
number = 4
number = 5

number = 1
number = 2
number = 3
number = 4
number = 5

Asst. Prof. Dr. Anilkumar K.G

The range Function with a Third Argument

• The range function expects a third argument that allows you to skip
some numbers from the loop result.

• The third argument specifies a step value or the interval between the
number used in the range, as shown below:

for count in range(2, 11, 2):
 print("count = ", count)

36

count = 2
count = 4
count = 6
count = 8
count = 10

Asst. Prof. Dr. Anilkumar K.G

The range Function with a Third Argument

• A for loop that counts down with a three-argument range function.
• The following program would count from 10 to 1:
for count in range(10, 0, -1):

 print("count = ", count)

• Write a program that can print from 10 to 0.

37

count = 10
count = 9
count = 8
count = 7
count = 6
count = 5
count = 4
count = 3
count = 2
count = 1

Asst. Prof. Dr. Anilkumar K.G

The range Function with a Third Argument
• Consider the following for loop program:
for count in range(10, 0, -1):

 print(count, end=“”)

Output is not a list: 10 9 8 7 6 5 4 3 2 1
• which can be re-write into the following with the list function to get a

result in the list form:
print(list(range(10, 0, -1)))

Output is a list: [10,9,8,7,6,5,4,3,2,1]

38 Asst. Prof. Dr. Anilkumar K.G

Exercise

• Write the outputs of the following loops:
• for count in range(5):
 print(count + 1, end=“ “)
• for count in range(1, 4):
 print(count, end=“ “)
• for count in range(1, 6, 2):
 print(count, end=“ “)
• for count in range(6, 1, -1):
 print(count, end=“ “)

39 Asst. Prof. Dr. Anilkumar K.G

Formatting Text for Output

• Many data-processing applications require output that has a tabular
format.

• In this format, numbers and other information are aligned in columns that
can be either left-justified or right-justified.

• The total number of data characters and additional spaces for a given
datum in a formatted string is called its field width.

40 Asst. Prof. Dr. Anilkumar K.G

Formatting Text for Output

• The example, which displays the exponents 7 through 10 and the values of
107 through 1010 shows the format of two columns produced by the print
function:

 for x in range (7, 11):
 print(x, 10 ** x)

41

7 10000000

8 100000000

9 1000000000

10 10000000000

Asst. Prof. Dr. Anilkumar K.G

Formatting Text for Output

• The following code would show how to right-justify the output of the
previous exponent program:

for x in range (1, 11):

 print("%4d%15d" % (x, 10 ** x))

• The following code would show how to left-justify the output of the
previous exponent program:

for x in range (1, 11):
 print("%-4d%-18d" % (x, 10 ** x))

42 Asst. Prof. Dr. Anilkumar K.G

Case study: An Investment Report

• The input:
1. Starting investment amount (float)
2. Number of years (int)
3. Interest rate (int)

• The report is displayed in tabular form with a header.
• The computations and outputs:

• For each year, compute the interest and add it to the investment and print a
formatted row of results for that year.

• The ending investment and interest earned are also displayed.

43 Asst. Prof. Dr. Anilkumar K.G

#Accept the inputs
startBalance = float(input("Enter the investment amount: "))
years = int(input("Enter the number of years: "))
rate = int(input("Enter the yearly rate in %: "))
#Convert the rate into a decimal
rate /= 100
#Initialize the total interest variable
totalInterest = 0.0
#Create the display header for the table
print("\n%4s%18s%10s%16s"% ("Year", "Starting balance", "Interest", "Ending
balance"))

#Compute and display the result for each year
for year in range (1, years + 1):
 interest = startBalance * rate
 endbalance = startBalance + interest
 print("%4d%18.2f%10.2f%16.2f" % (year, startBalance, interest, endbalance))
 startBalance = endbalance
 totalInterest += interest
#Display the totals for the given period
print("Ending balance: $%0.2f" % endbalance)
print("Total interest earned: $%0.2f" % totalInterest)

44 Asst. Prof. Dr. Anilkumar K.G

The Boolean Type Comparison and Expressions

• The Boolean data type consists of only two data values:
• True
• False

• The python’s comparison operators, that cause Boolean values are listed
below:

45

Comparison Operator Meaning

== Equals

!= Not equal
< Less than

<= Less than or equal
> Greater than

>= Greater than or equal
Asst. Prof. Dr. Anilkumar K.G

The Boolean Type Comparison and Expressions

• The following shows the examples of comparisons:

46

print(4 == 4)
print(4 == 5)
print(4 != 4)
print(4 != 5)
print(4 < 5)
print(4 < 3)
print(4 <= 4)
print(4 <= 5)
print(4 <= 3)
print(4 > 3)
print(4 > 5)
print(4 >= 4)
print(4 >= 5)
print(4 >= 3)

True
False
False
True
True
False
True
True
False
True
False
True
False
True

Asst. Prof. Dr. Anilkumar K.G

Selection: if and if-else Statements

• In if/if else statement, the computer must pause to examine or test a
condition, which express a hypothesis about the state of its world at
that point of time:

• If the condition is True, the computer executes the first alternative action and
skips the second alternative.

• If the condition is False, the computer skips the first alternative, and executes
the second alternative.

47 Asst. Prof. Dr. Anilkumar K.G

if, the one-way Selection Statement

• The simplest for of selection is the if statement. This type of control
statement is called a one-way selection statement, because it consists of
a condition and just a single sequence of statements.

• If the condition is True, the sequence of statements is run.
• Otherwise, control proceeds to the next statement following the entire selection

statement.

• Syntax for the if statement:
 if<condition>:
 <sequence of statements>

48 Asst. Prof. Dr. Anilkumar K.G

if, the one-way Selection Statement

• The following code would confirm your “A” grade:

mark = int(input(" Enter your final mark (out of 100): "))

if mark >= 90:

 print(" Your grade is ", "A")

49

Enter your final mark (out of 100): 90
 Your grade is A

Asst. Prof. Dr. Anilkumar K.G

if, the one-way Selection Statement

• Get an integer number from user and if it is less than or equal to 10,
then prints the range of numbers from 0 up to the number with their
exponent with 10 in a right aligned format.

number = int(input(" Enter an integer number: "))

if number <= 10:

 for x in range(number + 1):

 print("%4d%10d" % (x, 10 ** x))

50

Enter an integer number: 7
 0 1
 1 10
 2 100
 3 1000
 4 10000
 5 100000
 6 1000000
 7 10000000

Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement

• The if-else statement (also called a two-way selection) is the most
common type of selection statement, because it directs the computer to
make a choice between two alternative courses of action.

• Here is the Python syntax for the if-else statement:
 if<condition/test expression>:
 <body of if: sequence of statement>
 else:
 <body of else: sequence of statement>

51 Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement

• Example1:
mark = int(input("Enter your final mark <out of 100>: "))

if mark >= 90:

 print("You have 'A' grade!")

else:
 print("Your grade is not A!")

52 Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement

• Example2:
first = int(input("Enter the first number: "))
second = int(input("Enter the second number: "))
if first >= second:
 maximum = first
 minimum = second
else:
 maximum = second
 minimum = first
print(" The maximum is ", maximum)
print(" The minimum is ", minimum)

53

Enter the first number: 23
Enter the second number: 45
 The maximum is 45
 The minimum is 23

Asst. Prof. Dr. Anilkumar K.G

If - else, the two-way Selection Statement

• Example 3:
import math

area = float(input("Enter the area of the circle: "))

if area > 0:

 radius = math.sqrt(area / math.pi)

 print("The radius of the circle is %0.2f" % radius)

else:

 print("Error, the area must be a positive number!")

54

Enter the area of the circle: 4536.89
The radius of the circle is 38.00

Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements

• The multi-way if statement is useful when a program is faced with
testing several conditions that entail more than two alternative courses
of action.

• The multi-way if statement considers each condition until one evaluates
to True or they all evaluate to False. The Python syntax is the following:

 if <condition1>:
 <sequence of statement1>
 elif <conditionn>:
 <sequence of statementn>
 else:
 <default sequence of statements>

55 Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements
• Example1: Consider the problem of converting marks to letter grads, based on

the following information:
• Grade “A” = all marks above 89
• Grade “B” = all marks above 79 and below 90
• Grade “C” = all marks above 69 and below 80
• Grade “F” = all marks below 70

mark = int(input(" Enter your final mark <out of 100>: "))
if mark > 89:
 grade = "A"
elif mark > 79:
 grade = "B"
elif mark > 69:
 grade = "C"
else:
 grade = "F"
print(" Your garde is ", grade)

56 Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements

• Often a course of action must be taken if either of two
conditions is true.

• For example, valid inputs to a program often lie within a given
range of values.

• Any input above this range should be rejected with an error
message, and any input below this range should be dealt with
in a similar fashion.

57 Asst. Prof. Dr. Anilkumar K.G

Multi-way if Statements
mark = int(input(" Enter your final mark <out of 100>: "))
if mark > 100:
 print("Error! The mark must be between 0 and 100.")
elif mark < 0:
 print("Error! The mark must be between 0 and 100.")
else:
 if mark > 89:
 grade = "A"
 elif mark > 79:
 grade = "B"
 elif mark > 69:
 grade = "C"
 else:
 grade = "F"
 print(" Your garde is ", grade)

58

 Enter your final mark <out of 100>: 120
Error! The mark must be between 0 and 100.

 Enter your final mark <out of 100>: -30
Error! The mark must be between 0 and 100.

 Enter your final mark <out of 100>: 78
 Your garde is C

Asst. Prof. Dr. Anilkumar K.G

Logical Operators and Compound Boolean
Expressions

• Note that the first two conditions (from the previous multi-way if
program) are associated with identical actions.

• The two conditions can be combined in a Boolean expression that
uses the logical operator or.

• The resulting compound Boolean expression is given as:

59

mark = int(input(" Enter your final mark <out of 100>: "))
if mark > 100 or mark < 0:
 print("Error! The mark must be between 0 and 100.")
else:
 # the code to compute grade here

Asst. Prof. Dr. Anilkumar K.G

Logical Operators and Compound Boolean
Expressions

• Yet another way to describe this situation is to use the Boolean logical
operator and:

60

mark = int(input(" Enter your final mark <out of 100>: "))
if mark >= 0 and mark <= 100:
 if mark > 89:
 grade = "A"
 elif mark > 79:
 grade = "B"
 elif mark > 69:
 grade = "C"
 else:
 grade = "F"
 print(" Your garde is ", grade)
else:
 print("Error! The mark must be between 0 and 100.")

Asst. Prof. Dr. Anilkumar K.G

Logical Operators and Compound Boolean
Expressions

• Python includes three Boolean logical operators, and, or, and not.
• Both the and, and or operators expect two operands.

• The and operator returns True if and only if both of its operands are true, and
returns False otherwise.

• The or operator returns False if and only if both of its operands are false, and return
True otherwise.

• The not operator expects a single operand and returns its logical negation; True if it’s
false, and False if it’s true.

A = True
B = False
print(A and B)
print(A or B)
print(not A)

61

False
True
False

Asst. Prof. Dr. Anilkumar K.G

Operator Precedence from Highest to Lowest

Operator Symbol
Exponentiation **

Arithmetic negation −

Multiplication, division,
remainder

*, /, %

Addition, subtraction +, −

Comparison ==, !=, <, >, <=, >=

Logical negation not

Logical conjunction and
disjunction

and , or

Assignment =

62 Asst. Prof. Dr. Anilkumar K.G

Conditional Iteration: The while loop

• Earlier we examined the for loop, which executes a set of statements a
definite number of times specified by the programmer.

• In many situations, the number of iterations in a loop is unpredictable.
• The loop eventually completes its work, but only when a condition

changes.
• For example, the user might be asked for a set of input values. The program’s input

loop accepts these values until the user enters a special value or sentinel that
terminates the loop.

• This type of process is called conditional iteration.

• This section explores the while loop to describe conditional iteration.

63 Asst. Prof. Dr. Anilkumar K.G

The Structure and Behavior of a while Loop

• Conditional iteration requires that a condition be tested within the loop
to determine whether the loop should continue.

• Such a condition is called the loop’s continuation condition:
• If the continuation condition is false, the loop ends.
• If the continuation condition is true, the statements within the loop body are

executed again.

• Syntax for the while loop:

64

 while<condition>:
 <statements in the loop body>

Asst. Prof. Dr. Anilkumar K.G

while loop: Examples
• Get a set of numbers from the user until the user press the enter key (return

key) and prints their sum. The program recognize this value (enter key value)
as the empty string.

• Pseudocode algorithm:
 set the sum to 0.0
 input a string
 while the string is not the empty string
 convert the string to a float
 add the float to the sum
 input a string
 print the sum

65 Asst. Prof. Dr. Anilkumar K.G

while loop: Examples

• Here is the Python code:
sum = 0.0

data = input("Enter a number or just enter to quit: ")

while data != "":

 number = float(data)

 sum += number

 data = input("Enter a number or just enter to quit: ")

print("The sum is ", sum)

66

Enter a number or just enter to quit: 1
Enter a number or just enter to quit: 2
Enter a number or just enter to quit: 3
Enter a number or just enter to quit: 4
Enter a number or just enter to quit:
The sum is 10.0

Asst. Prof. Dr. Anilkumar K.G

Count Control with a while Loop
• You can also use a while loop for a count-controlled loop as a for loop. For

example see a summation code with a for loop and a while loop below:
sum = 0.0
for x in range(1, 1001):
 sum += x
print("Sum of numbers from 1 to 1000 is ", sum)

• The same program with a while loop:
sum = 0.0
lcv = 1
while lcv <= 1000:
 sum += lcv
 lcv += 1
print("The sum of numbers from 1 to 1000 is ", sum)

Asst. Prof. Dr. Anilkumar K.G 67

Count Control with a while Loop
• By contrast, a for loop specifies the control information concisely in the

header and automates its manipulation behind the scenes.
• The next example shows how the for loop and while loop are supporting

in a count down application:
for x in range(10, 0, -1):
 print(x)

• Count down with while loop:
LCV = 10
while LCV >= 1:
 print(LCV)
 LCV -= 1

Asst. Prof. Dr. Anilkumar K.G 68

The true while loop with break Statement

• Python includes a break statement that will allow us to break a true while
loop (an infinite loop) with if – else statement:
sum = 0.0
while True:
 number = input("Enter a number or just enter to quit: ")
 if number != "":
 sum += float(number)
 else:
 break
print(sum)

Asst. Prof. Dr. Anilkumar K.G 69

The true while loop with break Statement

• The previous true while loop script with a break statement can be modified
with an if statement:
sum = 0.0
while True:
 number = input("Enter a number or just enter to quit: ")
 if number == "":
 break
 sum += float(number)
print(sum)

Asst. Prof. Dr. Anilkumar K.G 70

The true while loop with break Statement
• The next example modifies the input section of the grade-conversion program to

continue taking input numbers from the user until the user enters an acceptable
value:

while True:
 mark = int(input("Enter your total mark <0-100>: "))
 if mark >= 0 and mark <= 100:
 break
 else:
 print("Error! The mark must be between 0 and 100.")
if mark > 89:
 print("Your grade is A.")
elif mark > 79:
 print("Your grade is B.")
elif mark > 69:
 print("Your garde is C.")
else:
 print("Your grade is F.")

Asst. Prof. Dr. Anilkumar K.G 71

Enter your total mark <0-100>: 345
Error! The mark must be between 0 and 100.

Enter your total mark <0-100>: 97
Your grade is A.

Exercises
• Translate the following for loops to equivalent while loops:
1. for count in range(100):

 print(count)

2. for count in range(1, 101):
 print(count)

3. for count in range(100, 0, -1):
 print(count)

Asst. Prof. Dr. Anilkumar K.G 72

Exercises

• Write a while loop that computes the factorial of a given integer N.
• The log2 of a given number N is given by M in the equation N = 2M.

The value of M is approximately equal to the number of times N can
be evenly divided by 2 until it becomes 0. Write a loop that computes
this approximation of the log2 of a given number N.

Asst. Prof. Dr. Anilkumar K.G 73

Random Numbers
• Python’s random module supports the random value generation. The

function randint (in random module) returns a random number from among
the numbers between the two arguments and including those numbers.

• Syntax:
 import random
 rand_value = random.randint(start_integer, final_integer)

• For example, see the results from rolling a die 10 times:
import random
for x in range(0, 10):
 value = random.randint(1, 6) #print random values
 print(value) # including 1 and 6

Asst. Prof. Dr. Anilkumar K.G 74

Random Numbers

• Write a guessing program that allows the user to enter a smaller number
and a larger number and guess the randint function generated value from
the smaller and the larger numbers.

Asst. Prof. Dr. Anilkumar K.G 75

Exercises
• Write a program that accepts the lengths of three sides of a triangle as

inputs. The program output should indicate whether or not the triangle is an
equilateral triangle.

• Write a program that accepts the lengths of three sides of a triangle as
inputs. The program output should indicate whether or not the triangle is a
right triangle (from the Pythagorean theorem that in a right triangle, the
square of one side equals the sum of the squares of the other two sides.

• Write a program that receives a series of numbers from the user and allows
the user to press the enter key to indicate that he/she is finished providing
inputs. After the user presses the enter key, the program should print the
sum of the numbers and their average. Finally, the program should check
whether the integer value of the average is an even or odd or a prime value.

Asst. Prof. Dr. Anilkumar K.G 76

Strings and Text Files

• In this section, we explore strings and text files, which are useful data
structures for organizing and processing text.

• Much about computation is concerned with manipulating text.
• After understanding this section, you will be able to:

• Access individual characters in a string, Retrieve a substring from a string,
Search for a substring in a string, Convert a string representation of a number
from one base to another base, and Use string methods to manipulate strings.

• Open a text file for output and write strings or numbers to the file, and Open a
text file for input and read strings or numbers from the file.

• Use library functions to access and navigates a file system.

Asst. Prof. Dr. Anilkumar K.G 77

The Structure of Strings: len function
• A string is a data structure. A data structure is a compound unit that

consists of several smaller pieces of data.
• A string is a sequence of zero or more characters.
• A string’s length is the number of characters it contains. Python’s len

function returns length value (no. of characters) when it is passed a
string.

• Usage of len function: len(string)
length = len("Hello")
print("Length of \“Hello\" is", length)

Asst. Prof. Dr. Anilkumar K.G 78

Length of “Hello" is 5

The Structure of Strings: len function

• The position of a string’s characters are numbered from 0, on the left,
to the length of the string minus 1.

• See the position of characters in the string “Hi there!”:

• The string is an immutable data structure. This means that its internal

data elements, the characters can be accessed, but the structure itself
cannot be modified.

Asst. Prof. Dr. Anilkumar K.G 79

H I t h e r e !
0 1 2 3 4 5 6 7 8

The Subscript Operator

• The form of a subscript operator is the following:
 <a string>[<an integer expression>]
• For example:

name = "Alan Turing"
print("The first character in \"" + name + "\"is", name[0])

• Get a string from the user and print its last character.

Asst. Prof. Dr. Anilkumar K.G 80

The first character in "Alan Turing"is A

The Subscript Operator

• The following code shows how a count-controlled loop displays the
characters and their positions of a string:
name = "Alan Turing"
for char in range(len(name)):
 print(char, name[char])

Asst. Prof. Dr. Anilkumar K.G 81

0 A
1 l
2 a
3 n
4
5 T
6 u
7 r
8 i
9 n
10 g

Slicing for Substrings

• Here are some examples that show how slicing is used:
name = "Alan Turing"
print(name[-1])
print(name[-2])
print(name[-3])
print(name[0:])
print(name[0:1])
print(name[0:2])
print(name[-3:])
print(name[:len(name)])

Asst. Prof. Dr. Anilkumar K.G 82

g
n
i
Alan Turing
A
Al
ing
Alan Turing

Testing for a Substring with the in Operator

• Suppose you want to separate filenames with a .txt extension. A slice
would work for this application, by using Python’s in operator.

• The operator in returns True if the target string is somewhere in the
search string, or False otherwise.

• The following sample code shows how to separate filenames with .txt
from a list of various filenames:
fileList = ["anil.exe", "data.txt", "function.exe",
"name.txt", "class.txt"]

for file in fileList:
 if ".txt" in file:
 print(file)

Asst. Prof. Dr. Anilkumar K.G 83

data.txt
name.txt
class.txt

Exercises
1. Assume that the variable data refers to the string “myprogram.exe”.

Write the values of the following expressions:
1. data[2]
2. data[-2]
3. len(data)
4. data[0:8]

2. Assume that the variable myString refers to a string. Write a code
segment that uses a loop to print that characters of the string in reverse
order.

3. Assume that the variable myString refers to a string and the variable
reversedString refers to an empty string. Write a loop that adds the
characters from myString to reversedString in a reverse order.

Asst. Prof. Dr. Anilkumar K.G 84

	Fundamentals of Python
	Introduction
	Introduction(cont.)
	Introduction(cont.)
	print function
	input function
	Data Types and Expressions
	Type Conversion
	round function
	Variable
	Exercise
	Escape sequence
	String Concatenation
	* operator
	ord and chr function
	Expressions
	Precedence Rule
	Precedence Rule
	Type Conversion
	Augmented Assignment
	The math Module
	Get Help for a math Function
	Printing math values in defined precisions
	Income Tax Calculator
	Slide Number 25
	Practice Questions
	Control Statements - Loops
	The for Loop
	The for Loop (cont.)
	The for Loop (cont.)
	for loop with Two Variables in range Function
	for loop with Two Variables in range Function
	Class Exercises
	Analyzing the range function using the list function
	Analyzing the range function using the list function
	The range Function with a Third Argument
	The range Function with a Third Argument
	The range Function with a Third Argument
	Exercise
	Formatting Text for Output
	Formatting Text for Output
	Formatting Text for Output
	Case study: An Investment Report
	Slide Number 44
	The Boolean Type Comparison and Expressions
	The Boolean Type Comparison and Expressions
	Selection: if and if-else Statements
	if, the one-way Selection Statement
	if, the one-way Selection Statement
	if, the one-way Selection Statement
	If - else, the two-way Selection Statement
	If - else, the two-way Selection Statement
	If - else, the two-way Selection Statement
	If - else, the two-way Selection Statement
	Multi-way if Statements
	Multi-way if Statements
	Multi-way if Statements
	Multi-way if Statements
	Logical Operators and Compound Boolean Expressions
	Logical Operators and Compound Boolean Expressions
	Logical Operators and Compound Boolean Expressions
	Operator Precedence from Highest to Lowest
	Conditional Iteration: The while loop
	The Structure and Behavior of a while Loop
	while loop: Examples
	while loop: Examples
	Count Control with a while Loop
	Count Control with a while Loop
	The true while loop with break Statement
	The true while loop with break Statement
	The true while loop with break Statement
	Exercises
	Exercises
	Random Numbers
	Random Numbers
	Exercises
	Strings and Text Files
	The Structure of Strings: len function
	The Structure of Strings: len function
	The Subscript Operator
	The Subscript Operator
	Slicing for Substrings
	Testing for a Substring with the in Operator
	Exercises

